Constructing Copoint Graphs of Convex Geometries
Faculty Sponsor
Jon Beagley
College
Arts and Sciences
ORCID Identifier(s)
0000-0002-2990-5802, 0000-0002-5752-8012, 0000-0002-1064-9415
Presentation Type
Poster Presentation
Symposium Date
Summer 7-30-2018
Abstract
We work with copoint graphs of convex geometries. Copoint graphs can be used to study the complex and fairly recent field of convex geometries. Comparing copoints graphs and their convex geometries helps identify properties. We demonstrate that multiple convex geometries have the same underlying copoint graph. All graphs on one to five vertices can be represented as possible copoint graphs of some convex geometry. Furthermore, we construct several infinite classes of copoint graphs including the complete k-partite graph, path graph, centipede graph, ladder graph, comb graph, pom pom graph, shark teeth graph, and broken wheel graph.
Recommended Citation
Cirulli, Giana; Knavel, Sierra; and Estrada, Ezequiel, "Constructing Copoint Graphs of Convex Geometries" (2018). Summer Interdisciplinary Research Symposium. 45.
https://scholar.valpo.edu/sires/45