Discharge mechanism of implantable cardiac defibrillator batter analog determined by Raman and Surface Enhanced Imaging spectroscopy
Faculty Sponsor
Paul Smith
College
Arts and Sciences
Department/Program
Chemistry
ORCID Identifier(s)
Logan Kiesewetter(0009-0002-1747-2656), Demi Brown(0000-0002-6963-4250)
Presentation Type
Poster Presentation
Symposium Date
Summer 7-26-2023
Abstract
Batteries must hit target metrics as a function of desired application. Regarding the battery in the Implantable Cardiac Defibrillator (ICD), a desired metric is predictable performance over long time scales (7-9 years). This performance is attributed to the use of a silver metal oxide electrode, which reduces into highly conductive silver metal. Here, we investigate analogous electrochemistry to the ICD battery: Zn(s) + AgxMoyOz → xAg(s)+ ZnMoyOz. We have characterized this reaction for monoclinic and triclinic Ag2Mo2O7 polymorphs by Raman spectroscopy at depths of discharge including full reduction of silver. Raman imaging maps of pellet electrodes prepared in steel mesh show a two-step heterogeneous reaction, with different reactivity of particles interfacing the electrolyte from those interfacing the back contact. Silver metal particles are spatially resolved in the electrode using surface enhanced Raman spectroscopy with methylene blue, giving an analytical enhancement factor of 103-104 at electrode hotspots. Overall, we have investigated the discharge mechanism of different cathodes towards increasing the predictability and longevity needed in ICD batteries.
Recommended Citation
Kiesewetter, Logan and Brown, Demi, "Discharge mechanism of implantable cardiac defibrillator batter analog determined by Raman and Surface Enhanced Imaging spectroscopy" (2023). Summer Interdisciplinary Research Symposium. 140.
https://scholar.valpo.edu/sires/140