Document Type
Article
Publication Date
2-14-2015
Journal Title
The Electronic Journal of Combinatorics
Volume
22
Issue
1
Abstract
Ascent sequences were introduced by Bousquet-Melou et al. in connection with (2+2)-avoiding posets and their pattern avoidance properties were first considered by Duncan and Steingrímsson. In this paper, we consider ascent sequences of length n" role="presentation" style="display: inline; font-size: 11.2px; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; font-family: Verdana, Arial, Helvetica, sans-serif; position: relative;">nn avoiding two patterns of length 3, and we determine an exact enumeration for 16 different pairs of patterns. Methods include simple recurrences, bijections to other combinatorial objects (including Dyck paths and pattern-avoiding permutations), and generating trees. We also provide an analogue of the Erdős-Szekeres Theorem to prove that any sufficiently long ascent sequence contains either many copies of the same number or a long increasing subsequence, with a precise bound.
Recommended Citation
Baxter, A. M., & Pudwell, L. K. (2015). Ascent sequences avoiding pairs of patterns. The Electronic Journal of Combinatorics, 22(1).