EMG Versus Torque Control of Human-Machine Systems: Equalizing Control Signal Variability Does Not Equalize Error or Uncertainty
Document Type
Article
Publication Date
6-2017
Journal Title
IEEE Transactions on Neural Systems and Rehabilitation Engineering
Volume
25
Issue
6
Abstract
In this paper we asked the question: if we artificially raise the variability of torque control signals to match that of EMG, do subjects make similar errors and have similar uncertainty about their movements? We answered this question using two experiments in which subjects used three different control signals: torque, torque+noise, and EMG. First, we measured error on a simple target-hitting task in which subjects received visual feedback only at the end of their movements. We found that even when the signal-to-noise ratio was equal across EMG and torque+noise control signals, EMG resulted in larger errors. Second, we quantified uncertainty by measuring the just-noticeable difference of a visual perturbation. We found that for equal errors, EMG resulted in higher movement uncertainty than both torque and torque+noise. The differences suggest that performance and confidence are influenced by more than just the noisiness of the control signal, and suggest that other factors, such as the user's ability to incorporate feedback and develop accurate internal models, also have significant impacts on the performance and confidence of a person's actions. We theorize that users have difficulty distinguishing between random and systematic errors for EMG control, and future work should examine in more detail the types of errors made with EMG control.
Recommended Citation
Johnson, R.E., Kording, K.P., Hargrove, L.J., Sensinger, J.W. (2017). EMG versus torque control of human–machine systems: Equalizing control signal variability does not equalize error or uncertainty. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(6), 660-667. DOI: 10.1109/TNSRE.2016.2598095