An Exploratory Study of the Solar Thermal Electrolytic Production of Mg from MgO

Document Type

Article

Publication Date

3-2013

Abstract

The electrolytic production of Mg from MgO was experimentally and theoretically investigated near 1550 K. The experimental work was carried out in a SiC electrolytic cell housed in a 10 kW solar receiver that was located at the focal point of a concentrating solar furnace. The oxide was dissolved in either CaF2 or MgF2. The cathode was Mo and the anode was either Pt or C-graphite. Mg evolved as a gas, was quenched on cooling coils at the exit of the reactor and was collected for analysis. A thermodynamic cycle study indicates that the ideal thermal efficiency for the solar process is 35 percent for an inert anode and 39 percent for a carbon anode. Experimental results from both current-cell potential traces and X-ray diffraction verify the successful electrolysis of MgO and the production of Mg. The experimental decomposition potential of the oxide was near the expected thermodynamic value. As expected, the experimental decomposition potential was reduced when carbon replaced the inert anode. In the experiment with Pt as the anode and MgF2 as the solvent, a current efficiency of 14 percent was measured. (C) 2013 Elsevier Ltd. All rights reserved.

Share

COinS