April 1984

Aquatic Hemiptera of Wisconsin

William L. Hilsenhoff
University of Wisconsin

Follow this and additional works at: http://scholar.valpo.edu/tgle
Part of the Entomology Commons

Recommended Citation

This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at scholar@valpo.edu.
AQUATIC HEMIPTERA OF WISCONSIN

William L. Hilsenhoff

ABSTRACT

About 59,000 aquatic Hemiptera were collected in Wisconsin, most of them in the last 15 years. These include three species of Belostomatidae, 48 species of Corixidae, one species of Nauocoridae, four species of Nepidae, nine species of Notonectidae, and one species of Pleidae. The riparian Gelastocoris oculatus was also found. Species keys for adults are provided along with notes on identification, habitat, biology, distribution, and abundance. Most species reached peak abundance in late summer and autumn and overwintered as adults, but seven species apparently overwintered as eggs. Most lentic species flew to streams or larger lentic habitats to overwinter. Populations of all species declined rapidly after mating and oviposition in the spring.

Species in six families of aquatic Hemiptera have been collected in Wisconsin, and their distribution, abundance, habitat preference, and identification are discussed here. Species in all families are predators, except Corixidae, which mostly feed on algae and detritus. In addition, species in five families of semiaquatic Hemiptera have been collected and will be treated in a subsequent publication. The usually riparian Gelastocoris oculatus (Fabricius, 1798) is also known to occur in Wisconsin from a female collected by C. E. Brown in Milwaukee County in 1900 (Todd 1955), from one in the University of Wisconsin Insect Collection collected in 1910 by A. C. Burrill and labeled "Rice L. Wis." (presumably Barron Co.), and from two specimens collected by Dr. Walter Suter from the margin of a pond in Kenosha County in 1970.

Most collections of aquatic Hemiptera were made in the last 15 years when I sampled lentic and lotic habitats throughout the state. All specimens have been deposited in the University of Wisconsin Insect Collection. Not all that were captured were retained. When thousands of corixids were captured at a site, only about 300 representative individuals were kept. Similarly, only 25 to 50 of easily recognized species of Notonecta or Plea were retained from each site.

Most species appeared to have two generations each year in Wisconsin, reaching peak abundance in late summer and early autumn. Except for Trichocorixa naias, Hesperocorixa scabricula, the four species of Buenoa, and Notonecta borealis, all of which apparently overwinter as eggs, most aquatic Hemiptera overwinter as adults. Their numbers become somewhat depleted by spring and decline precipitously after mating and oviposition in April or May. Individuals usually enter overwintering sites in September and October, and many species that breed in shallow lentic habitats fly to streams to overwinter, congregating along the banks in areas with reduced current. Many collections were made at such overwintering sites, but five or more lentic sites were also sampled in every Wisconsin county during this 15-year period, some of them several times.

Collections made in the last 25 years are summarized in Table 1. In this table the state is divided into nine 8-county regions as depicted in Figure 1. From the total number of insects collected in each region it will be noted that the sampling effort was not uniform, and this must be considered when comparing numbers of a species collected from the various regions. McKenna Pond, a shallow 0.8 ha pond in Dane County, is listed separately in Table 1 because it was sampled at weekly or biweekly intervals throughout...
Table 1. Numbers of each species of aquatic Hemiptera collected in nine areas of Wisconsin and McKenna Pond between 1962 and 1983 and total number of collections.

<table>
<thead>
<tr>
<th>Species</th>
<th>North</th>
<th>Central</th>
<th>South</th>
<th>McKenna Pond</th>
<th>Total Number Collected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>West</td>
<td>Cent</td>
<td>East</td>
<td>West</td>
<td>Cent</td>
</tr>
<tr>
<td>BELOSTOMATIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belostoma flumineum</td>
<td>122</td>
<td>53</td>
<td>43</td>
<td>75</td>
<td>117</td>
</tr>
<tr>
<td>Lethocerus americanus</td>
<td>29</td>
<td>19</td>
<td>11</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>CORIXIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Callicorixa audeni</td>
<td>135</td>
<td>303</td>
<td>299</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>Cenocorixa dakotensis</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>C. utahensis</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Corisella edulis</td>
<td>1</td>
<td>1</td>
<td>122</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>C. tarsalis</td>
<td>80</td>
<td>3</td>
<td>61</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Cymatia americana</td>
<td>1027</td>
<td>883</td>
<td>548</td>
<td>250</td>
<td>420</td>
</tr>
<tr>
<td>Hesperocorixa atropunctata</td>
<td>87</td>
<td>174</td>
<td>20</td>
<td>5</td>
<td>46</td>
</tr>
<tr>
<td>H. kennicotti</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>H. laevigata</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>H. lobata</td>
<td>883</td>
<td>1542</td>
<td>91</td>
<td>42</td>
<td>527</td>
</tr>
<tr>
<td>H. lucida</td>
<td>650</td>
<td>842</td>
<td>726</td>
<td>67</td>
<td>151</td>
</tr>
<tr>
<td>H. michiganensis</td>
<td>1673</td>
<td>1542</td>
<td>1639</td>
<td>243</td>
<td>142</td>
</tr>
<tr>
<td>H. minorella</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>H. obliqua</td>
<td>91</td>
<td>10</td>
<td>30</td>
<td>55</td>
<td>19</td>
</tr>
<tr>
<td>H. semilucida</td>
<td>4</td>
<td>18</td>
<td>17</td>
<td>20</td>
<td>59</td>
</tr>
<tr>
<td>H. vulgaris</td>
<td>112</td>
<td>192</td>
<td>122</td>
<td>22</td>
<td>12</td>
</tr>
<tr>
<td>Palmacorixa buenoi</td>
<td>6</td>
<td>5</td>
<td>9</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>P. gillette</td>
<td>2</td>
<td>11</td>
<td>9</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>P. nana</td>
<td>19</td>
<td>23</td>
<td>2</td>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>Rhamphocorixa acuminata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sigara alternata</td>
<td>659</td>
<td>388</td>
<td>323</td>
<td>613</td>
<td>778</td>
</tr>
<tr>
<td>S. bicoloripennis</td>
<td>104</td>
<td>41</td>
<td>91</td>
<td>83</td>
<td>36</td>
</tr>
<tr>
<td>S. compressoroida</td>
<td>252</td>
<td>527</td>
<td>195</td>
<td>74</td>
<td>268</td>
</tr>
<tr>
<td>S. conocephala</td>
<td>3</td>
<td>3</td>
<td>125</td>
<td>9</td>
<td>54</td>
</tr>
<tr>
<td>S. decorata</td>
<td>43</td>
<td>21</td>
<td>5</td>
<td>31</td>
<td>67</td>
</tr>
<tr>
<td>S. decoratella</td>
<td>96</td>
<td>45</td>
<td>84</td>
<td>54</td>
<td>98</td>
</tr>
<tr>
<td>S. defecta</td>
<td>142</td>
<td>20</td>
<td>23</td>
<td>19</td>
<td>56</td>
</tr>
<tr>
<td>S. dolabra</td>
<td>17</td>
<td>8</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. douglasensis</td>
<td>203</td>
<td>36</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>

http://scholar.valpo.edu/tgle/vol17/iss1/5
<table>
<thead>
<tr>
<th>Species</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. grossolineata</td>
<td>45</td>
<td>301</td>
<td>220</td>
<td>58</td>
<td>176</td>
<td>319</td>
<td>277</td>
<td>454</td>
<td>181</td>
<td>10</td>
<td>2041</td>
<td>405</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. johnstoni</td>
<td>76</td>
<td>57</td>
<td>18</td>
<td>18</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>S. knighti</td>
<td>14</td>
<td>73</td>
<td>45</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>S. lineata</td>
<td>13</td>
<td>728</td>
<td>1011</td>
<td>121</td>
<td>281</td>
<td>3</td>
<td>300</td>
<td>848</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. mackinacensis</td>
<td>105</td>
<td>50</td>
<td>30</td>
<td>19</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>S. macropala</td>
<td>11</td>
<td>41</td>
<td>4</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>S. mathesoni</td>
<td>28</td>
<td>212</td>
<td>192</td>
<td>75</td>
<td>89</td>
<td>43</td>
<td>202</td>
<td>418</td>
<td>204</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. mallettensis</td>
<td>52</td>
<td>84</td>
<td>24</td>
<td>23</td>
<td>23</td>
<td>65</td>
<td>1</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. pennisensis</td>
<td>76</td>
<td>30</td>
<td>24</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>S. signata</td>
<td>480</td>
<td>394</td>
<td>160</td>
<td>108</td>
<td>200</td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>S. solensis</td>
<td>42</td>
<td>67</td>
<td>83</td>
<td>39</td>
<td>49</td>
<td>1002</td>
<td>2</td>
<td>25</td>
<td>18</td>
<td>1</td>
<td>1328</td>
<td>113</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. transfigurata</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>S. trilineata</td>
<td>58</td>
<td>372</td>
<td>292</td>
<td>26</td>
<td>614</td>
<td></td>
<td>37</td>
<td>260</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. variabilis</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Trichocorixa borealis</td>
<td>54</td>
<td>8</td>
<td>24</td>
<td>13</td>
<td>291</td>
<td>170</td>
<td>42</td>
<td>401</td>
<td>268</td>
<td>1</td>
<td>1272</td>
<td>141</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. calva</td>
<td>1</td>
<td>1</td>
<td>37</td>
<td>11</td>
<td>199</td>
<td>101</td>
<td>241</td>
<td>12</td>
<td>603</td>
<td>107</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. kanza</td>
<td>2</td>
<td></td>
<td>3</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>54</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. naias</td>
<td>54</td>
<td>51</td>
<td>56</td>
<td>110</td>
<td>77</td>
<td>121</td>
<td>149</td>
<td>254</td>
<td>161</td>
<td>71</td>
<td>1104</td>
<td>208</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAUCORIDAE</td>
<td></td>
</tr>
<tr>
<td>Pelocoris femoratus</td>
<td></td>
</tr>
<tr>
<td>NEPIDAE</td>
<td></td>
</tr>
<tr>
<td>Nepa apiculata</td>
<td></td>
</tr>
<tr>
<td>Ranatra fusca</td>
<td>88</td>
<td>104</td>
<td>101</td>
<td>100</td>
<td>94</td>
<td>74</td>
<td>62</td>
<td>97</td>
<td>74</td>
<td>33</td>
<td>827</td>
<td>410</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. kirkaldyi</td>
<td></td>
</tr>
<tr>
<td>R. nigra</td>
<td></td>
</tr>
<tr>
<td>NOTONECTIDAE</td>
<td></td>
</tr>
<tr>
<td>Buenoa confusa</td>
<td>20</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>31</td>
<td>28</td>
<td>5</td>
<td>30</td>
<td>19</td>
<td>167</td>
<td>310</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. limnocastris</td>
<td></td>
</tr>
<tr>
<td>B. macrotibialis</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>B. marginata</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Notonecta borealis</td>
<td></td>
</tr>
<tr>
<td>N. insulata</td>
<td>29</td>
<td>4</td>
<td>50</td>
<td>15</td>
<td>4</td>
<td>5</td>
<td>12</td>
<td>10</td>
<td>1</td>
<td>2</td>
<td>132</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. irrorata</td>
<td>73</td>
<td>26</td>
<td>38</td>
<td>5</td>
<td>41</td>
<td>6</td>
<td>126</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. lunata</td>
<td>53</td>
<td>134</td>
<td>46</td>
<td>69</td>
<td>220</td>
<td>251</td>
<td>266</td>
<td>273</td>
<td>121</td>
<td>4</td>
<td>1437</td>
<td>320</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. undulata</td>
<td>761</td>
<td>208</td>
<td>562</td>
<td>324</td>
<td>306</td>
<td>262</td>
<td>226</td>
<td>445</td>
<td>335</td>
<td>334</td>
<td>3763</td>
<td>582</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLEIDAE</td>
<td></td>
</tr>
<tr>
<td>Neolepta striota</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>8356</td>
<td>8252</td>
<td>7604</td>
<td>3322</td>
<td>5653</td>
<td>4427</td>
<td>4675</td>
<td>8914</td>
<td>4657</td>
<td>3164</td>
<td>59024</td>
<td>8662</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hilsenhoff: Aquatic Hemiptera of Wisconsin

Published by ValpoScholar, 1984
much of a 6-year period as part of another study. Lentic habitats in unglaciated areas of western and southwestern Wisconsin are under-represented in the collections because only hard-to-find man-made ponds or river-bottom ponds occur there.

Keys to adults of species that occur or may occur in Wisconsin follow a brief discussion of each family. Reference to a recent revision of each family is also cited to provide supplemental illustrations and keys to species. Lengths were measured from the front of the head to the tip of the hemelytra, and literature values were used for species not collected. The distribution, abundance, habitat preference, and identification of each species that was collected is discussed separately. Each Wisconsin county has been numbered, generally from northwest to southeast (Figure 1), to facilitate listing of county records.
BELOSTOMATIDAE

Three species of "giant water bugs," have been collected in Wisconsin, and a fourth, *Belostoma lutarium* (Stål, 1856), may occur in southern Wisconsin. This species is found regularly in southern Illinois and there is one record from southeastern Michigan. All of the species breed primarily in lentic habitats, but frequently are collected in late autumn and early spring from overwintering sites along stream banks. Because all species are attracted to lights, they are sometimes called "electric light bugs." All species that occur in eastern North America can be identified by using keys by Lauck (1964) and Menke (1963).

Key to Species of Belostomatidae in Wisconsin

1. Length 18–25 mm .. *Belostoma*
2. Length more than 45 mm *Lethocerus*

2(1). *Belostoma*: Dense pile of fine setae extending to mesal edge of lateral abdominal sternites and extending onto mesal sternites; scutellum distinctly longer than hemelytral commissure; length 20–24 mm *B. flumineum*
3. Dense pile of fine setae on lateral abdominal sternites separated from middle sternites by a narrow strip devoid of setae; scutellum about as long as hemelytral commissure; length 18–24 mm *B. lutarium*

3(1'). *Lethocerus*: Profemur grooved to receive protibia; head and pronotum unicolorous; length 47–60 mm *L. americanus*

3'. Profemur flat on inner margin; a pale stripe extends from between eyes onto pronotum; length 54–65 mm *L. griseus*

Belostoma flumineum Say, 1831

Distribution and Abundance: Common throughout Wisconsin. County records: 1–8, 10, 12–72.

Habitat: It breeds in all types of shallow, weedy ponds and flies to streams to overwinter under the banks.

Identification: Very similar to *B. lutarium*, but it can be separated with certainty from this southern species by the dense pile of setae on the lateral sternites that completely covers these sternites, except for the lateral edge, and even extends onto the middle sternites. In *B. lutarium* there is a distinct bare strip mesally between the pyle and the middle sternites.

Lethocerus americanus (Leidy, 1847)

Distribution and Abundance: Generally uncommon, but apparently more common in northern Wisconsin than in the south. County records: 1–15, 18–19, 23–25, 27, 30–31, 36, 38–39, 41–42, 47, 50, 52, 54, 57–58.

Habitat: It breeds primarily in lentic habitats ranging from small ponds to lakes. It overwinters in deep lentic habitats or flies to streams.

Identification: Nymphs as well as adults can be identified by their very large size and the grooved inner margin of the profemur.

Lethocerus griseus (Say, 1832)

Distribution and Abundance: Rare. I have not collected this species, but there are nine specimens in the University of Wisconsin Insect Collection, all of them from Dane County.

Habitat: I suspect that this southern species inhabits deeper waters of large ponds and littoral zones of lakes, making it almost impossible to capture with an aquatic net. Specimens in the collection were probably captured at lights.

Identification: The pale stripe between the eyes and extending onto the pronotum is quite distinctive. The broad, flat, inner margin of the profemur is conclusive.
"Water boatmen" are the most abundant aquatic Hemiptera in Wisconsin and have the greatest diversity of species. Forty-nine species have been collected, and with additional collecting a few more may be found. They inhabit all types of lentic and slow lotic habitats, but do not venture into the swift currents of streams. Almost all species are able to fly, and most do so frequently during the warmer months. Most species that breed in shallow lentic habitats fly to larger bodies of water, especially to slow streams, to overwinter. Taking advantage of this, about 22,000 corixids were collected in Wisconsin and identified between 1962 and 1968, mostly from streams in late autumn. Their distribution and abundance was reported and keys to Wisconsin species and notes on identification were provided (Hilsenhoff 1970).

Since 1968 an additional 24,000 corixids were collected in Wisconsin and identified. Unlike previous collections that came mostly from streams, many of these corixids were collected from lentic habitats. *Cymatia americana* was the only species that had not been found previously, but much knowledge was gained about probable breeding sites. Several species were found to be more common than previously reported, especially those species that breed in lentic habitats and rarely fly to streams to overwinter.

By using the key below it should be possible to identify all species of Corixidae likely to occur in Wisconsin. Males can be identified positively by using secondary sexual characters, all of which are thoroughly illustrated by Hungerford (1948) in his monumental monograph on the Corixidae of the Western Hemisphere, or by Sailer (1948) as part of this monograph. Females, which average about 7% longer than males, are occasionally difficult to identify. Figure 2 illustrates morphological structures used in identification of this difficult family.

Key to species of Corixidae in Wisconsin

1. Rostrum without transverse grooves; pronotum without transverse dark bands; length 6.5–8.2 mm .. *Cymatia americana*

1'. Rostrum with transverse grooves; pronotum with transverse bands, although they may be indistinct .. 2

2(1'). Entire hemelytral pattern effaced; palar claw serrate at base; vertex of male acuminate; length 5.3–6.0 mm *Ramphocorixa acuminata*

2'. Hemelytral pattern distinct, although limited areas may be effaced 3

3(2'). Small shining corixids, male with sinistral asymmetry; apex of clavus not, or scarcely exceeding a line drawn through costal margins at nodal furrows . .. *Trichocorixa* 10

3'. Male asymmetry dextral; apex of clavus plainly exceeding a line drawn through costal margins at nodal furrows 4

4(3'). Markings on clavus transverse, those on corium transverse, longitudinal, or reticulate; dark areas predominate 5

4'. Markings on clavus and corium narrow and broken, usually open reticulate with many interconnections; light areas predominate or equal dark areas in prominence ... 7

5(4). Pruinose area at base of claval suture short and broadly rounded at apex, about 2/3 as long as postnodal pruinose area; prothoracic lobe truncate *Hesperocorixa* 14

5'. Pruinose area at base of claval suture narrowly rounded or pointed at apex and almost as long as postnodal pruinose area; prothoracic lobe rounded 6

6(5'). Corial pattern transverse with little contrast between dark and light markings; male strigil absent; mesoe拼搏meron slightly wider than prothoracic lobe and with scent gland osteole near tip; metaxyphus slightly longer than wide; length 6.5–8.1 mm .. *Callitocorixa* 26

6'. Corial pattern longitudinal, reticulate, or transverse, with light and dark markings usually contrasting; male strigil present *Sigara* 27
7(4'). Rear margin of head sharply curved, embracing an unusually short pronotum; interocular space much narrower than width of an eye. *Palmacorixa* 51

7'. Rear margin of head gently curved; interocular space about equal to width of an eye. 8

8(7'). Prothoracic lobe tapering to a narrowly rounded apex; dark marks on anterior of clavis very narrow, often obscure. *Corisella* 53

8'. Prothoracic lobe truncate at apex; dark marks on anterior of clavis distinct. 9

9(8'). Postocular space broader than antenna; anterior distal angle of prothoracic lobe produced and turned inward; length 7.6–9.2 mm. *Dasycorixa hybrida* 11

9'. Postocular space narrower than antenna; apex of prothoracic lobe squarely truncate; smaller, less than 8.3 mm long. *Cenocorixa* 54

10(3). *Trichocorixa*—Male strigil small and round; nodal furrow of female absent or at apex of embolar groove. 11

10'. Male strigil elongate; nodal furrow dividing embolium of female. 12

11(10). Length of pronotal disc 1/2 or more its width; length 3.4–4.6 mm. *T. naias* 13

11'. Length of pronotal disc about 1/4 its width; extremely small, length 2.8–3.2 mm. *T. macroceps* 13

12(10'). Male strigil noticeably widened in region of bend to equal width of mesotarsus; length of apical area of embolar groove of female exceeding length of mesotarsus; length 4.1–5.2 mm. *T. borealis* 13

12'. Male strigil not noticeably widened near bend and distinctly narrower than mesotarsus; length of apical area of embolar groove of female less than that of mesotarsus. 13

13(12'). Strigil of male extremely narrow, little more than a heavy dark line; only fine pubescence on right side of seventh abdominal sternum of female; length 3.9–5.3 mm. *T. calva* 13

13'. Strigil of male 8–10 times as long as wide; 2 or 3 patches of bristle-like setae on right side of seventh abdominal sternum of female; length 4.5–5.5 mm. *T. kanzia* 13

14(5). *Hesperocorixa*—Mesoepimeron at level of scent gland osteole as broad or broader than lateral lobe of prothorax. 15

14'. Mesoepimeron plainly narrower than lateral lobe of prothorax. 19

15(14). Tip of metaxyphus broadly truncated; length 7.9–9.2 mm. *H. kennicottii* 16

15'. Tip of metaxyphus pointed. 16

16(15'). Mesoepimeron at level of scent gland osteole equal to width of prothoracic lobe; length 8.3–9.9 mm. *H. atopodonta* 17

16'. Mesoepimeron at level of scent gland osteole distinctly wider than prothoracic lobe; less than 8.1 mm long. 17

17(16'). Two stout spines dorsally on metafemur; length 6.7–7.8 mm. 18

17'. Many spines dorsally on metafemur. 18

18(17'). Corial pattern crossbanded; length 6.4–7.9 mm. *H. michiganensis* 19

18'. Corial pattern longitudinal; length 7.0–8.1 mm. *H. semilucida* 19

19(14'). Pronotum short, less than half as long as wide; length 9.7–12.7 mm. 20

19'. Pronotum more than half as long as wide. 20

20(19'). Pattern of corium effaced laterally; length 8.5–9.6 mm. *H. lucida* 21

20'. Pattern of corium not effaced. 21

21(20'). Corium and membrane separated by a coalescing of pale figures. 22

21'. Corium and membrane not separated by a coalescing of pale figures. 23

22(21). Interocular space almost equal to width of an eye; metaxyphus as broad as long; male pala rounded apically; length 9.5–10.6 mm. *H. lobata* 22

22'. Interocular space much narrower than width of an eye; metaxyphus longer than broad; male pala truncated apically; length 9.0–11.0 mm. *H. interrupta*
23(21'). Metafemur with a row of about 10 spines ventrally on posterior distal margin; small, length 8.0-9.2 mm
H. nitida
23'. Metafemur with a row of 4 to 7 spines ventrally on posterior distal margin; large, more than 9.2 mm long
H. laevigata
24(23'). Pronotum nonrastrate; hemelytral pattern somewhat reticulate; length 9.4-10.7 mm
H. vulgaris
24'. Pronotum rastrate; hemelytral pattern not reticulate
H. obliqua
25(24'). Male pala concave apically; usually with a row of 4 spines ventrally on posterior distal margin of metafemur; length 9.3-10.4 mm
H. laevigata
25'. Upper distal angle of male pala acutely, obliquely produced; usually with a row of 5 spines ventrally on posterior distal margin of metafemur; length 9.4-10.3 mm
H. obliqua
26(6). Callicorixa—First metatarsal segment uniclorous; length 6.5-7.8 mm
C. audeni
26'. First metatarsal segment infuscated on distal third; length 6.9-8.1 mm
C. alaskensis
27(6'). Sigara—Pronotum with a median pale longitudinal line
S. variabilis
27'. Pronotum without a median pale longitudinal line
S. johnstoni
28(27). Tip of mesoepimeron as close or closer to scent gland osteole than to mesosternum
S. knighi
28'. Scent gland osteole remote from tip of mesoepimeron, farther than distance from tip to mesosternum
S. mackinacensis
29(28). Hemelytra mostly black with wide pale markings that are transverse on clavis and somewhat longitudinal on corium; male pala thickened, with prominent keel on outside; length 5.7-6.6 mm
S. transfigurata
29'. Markings on hemelytra narrower and arranged differently
S. compressoidea
30(29'). Male pala with strongly arched single row of pegs; female with anal lobes not notched on inner margin; length 6.3-7.2 mm
S. mackinacensis
30'. Male pala with 2 rows of pegs; female with anal lobes notched on inner margin; length 5.4-6.5 mm
S. mackinacensis
31(28'). Pronotum and hemelytra boldly cross-barred; vertex produced beyond eye curve in both sexes; length 5.5-5.8 mm
S. transfigurata
31'. Pattern less striking; vertex not noticeably produced
S. compressoidea
32(31'). Pattern of membrane effaced or indistinct; pale figures on corium and clavis transverse; length 5.2-5.8 mm
S. mackinacensis
32'. Pattern of membrane usually distinct; pale figures on corium and distal half of clavis arranged more or less longitudinally; length 5.0-6.3 mm
S. mackinacensis
33(32'). Large species, males greater than 6.8 mm long, females greater than 7.3 mm long
S. mackinacensis
33'. Small species, males less than 6.7 mm long, females less than 7.2 mm long
S. mackinacensis
34(33'). Metaxyphus broad, truncated or notched at tip; length 8.1-9.5 mm
S. decorata
34'. Metaxyphus pointed apically
S. decorata
35(34'). Palae of both sexes with only 14-16 lower palmar hairs; pale marks on corium distinctly transverse, length 6.9-8.2 mm
S. decorata
35'. Palae with 18-22 lower palmar hairs; pale marks on corium never distinctly transverse, but at least somewhat longitudinal
S. penniensis
36(35'). Interocular space plainly narrower than width of an eye; pale marks on corium and distal half of clavis arranged in a definite longitudinal series; length 6.9-7.9 mm
S. conocephala
36'. Interocular space equal to width of an eye; pale marks on clavis and some on corium transverse; length 7.3-8.5 mm
S. conocephala
37(33'). Small, less than 4.6 mm long; two black longitudinal stripes on corium; length 3.8-4.6 mm
S. lineata
37'. Larger, more than 4.6 mm long; if less than 5.0 mm long, without longitudinal
stripes on corium .. 38
38(37'). Metaxyphus much longer (from widest point to tip) than wide 39
38'. Metaxyphus short, at most as long as wide 42
39(38). Clavus and corium with pale lines in a wavy longitudinal series; length 5.2–5.9
mm .. S. douglasensis
39'. Markings on clavus and corium not in a wavy longitudinal series 40
40(39'). Mesoeopimeron at level of scent gland osteole about equal in width to prothoracic
lobe; length 6.0–6.8 mm ... S. dolabra
40'. Mesoeopimeron at level of scent gland osteole much broader than width of
prothoracic lobe ... 41
41(40'). Dark, with little contrast between light and dark marks; pale bands on base of
clavus more or less broken and confused; dorsal surface of metafemur with 2 or 3
rows of pegs; length 4.5–5.3 mm S. signata
41'. Hemelytral pattern bold; pale bands on base of clavus entire, bands on corium
plainly transverse; dorsal surface of metafemur with only 3 or 4 pegs; length
4.8–5.8 mm .. S. solensis
42(38'). Scent gland osteole nearer base of mesoeopimeron than tip 43
42'. Scent gland osteole near tip of mesoeopimeron 46
43(42). Corium with 3 longitudinal dark stripes; length 5.1–6.0 mm S. trilineata
43'. Corium without longitudinal dark stripes 44
44(43'). Head with median longitudinal brown line; mesoeopimeron with deep incision at
or near lateral bend; length 4.8–5.6 mm S. mathesoni
44'. Head without line; mesoeopimeron without deep incision near lateral bend...
... 45
45(44'). Osteole almost in lateral bend of mesoeopimeron, at least 4/5 from tip; metaxyphus
with a truncated tip; length 4.8–5.9 mm S. grossolineata
45'. Osteole not so close to lateral bend, 1/2–3/5 from tip; metaxyphus with a rounded
tip; length 4.6–5.7 mm .. S. modesta
46(42'). Corium with 3 bold, uninterrupted, longitudinal black stripes; male pala with 2
rows of pegs; anal lobes of female only very slightly notched on inner margin;
length 5.5–6.8 mm .. S. mulettensis
46'. Corial pattern transverse or indistinctly longitudinal; male pala with one row of
pegs; if corial pattern is somewhat longitudinal, anal lobes of female distinctly
notched on inner margin ... 47
47(46'). Pattern of membrane, and usually also inner basal angle of clavus, effaced or
obscure; small, length 4.6–5.6 mm S. hubbelli
47'. Pattern of membrane and clavus distinct; at least 5.2 mm long 48
48(47'). Pronotum crossed by 5 or 6 dark bands; length 5.2–5.9 mm 49
48'. Pronotum crossed by 8 or 9 dark bands 49
49(48'). Corium with 3 more or less distinct dark longitudinal bands; pala of male with
pegs becoming widely separated distally; anal lobes of female notched on inner
margin; length 5.4–6.8 mm .. S. defecta
49'. Corium without 3 dark longitudinal bands; pegs of male pala evenly spaced; anal
lobes of female not notched on inner margin 50
50(49'). Metaxyphus short, rounded apically; length 6.0–6.9 mm S. bicoloripennis
50'. Metaxyphus about as long as wide, pointed apically; length 5.9–7.2 mm ..
... S. alternata
51(7). Palmacorixa—Pronotum with well marked anterolateral depressions; male pala
very broad, almost disc-like, with poorly defined pegs; length 5.1–5.9 mm
... P. gillettei
51'. Anterolateral depressions on pronotum weak or absent; male pala elongate.
... 52
52(51'). Mesofemur of male with a longitudinal row of pegs on ventral surface; female less
than 5.2 mm long; length 4.4–5.2 mm P. nana
52'. Mesofemur of male without a row of pegs; female 5.4 mm or longer; length 4.9–6.5 mm. .. *P. buenoi*

53(8). *Corisella*—Less than 7.0 mm long; metatarsus embrowned; length 5.7–6.9 mm .. *C. tarsalis*

53'. More than 7.0 mm long; metatarsus pale; pattern of clavus effaced at inner, basal angle; length 7.1–8.5 mm. .. *C. edulis*

54(9'). *Cenocorixa*—Last metatarsal segment black or dark brown; metafemur pubescent for about 1/3 its length; length 7.5–8.0 mm *C. dakotensis*

54'. Last metatarsal segment pale; metafemur pubescent for at least 40% of its length .. 55

55(54'). Shining costal area just anterior to nodal furrow longer than mesotarsus; peg row of male pala divided; length 6.8–8.0 mm. .. *C. bifida*

55'. Shining costal area just anterior to nodal furrow equal to mesotarsus in length; peg row of male pala entire; length 6.8–8.3 mm. .. *C. utahensis*

Callicorixa audeni Hungerford, 1928

Distribution and Abundance: Common northern third, rare central third, absent southern third. County records: 1–24, 26–30, 35, 37, 41, 47.

Habitat: It probably breeds in ponds and swamps, mostly in wooded areas, and often flies to larger streams in autumn to overwinter.

Identification: The black prothoracic lobe is distinctive, but some, especially teneral individuals, lack this feature. Males are distinctive, having no strigil and two rows of pegs on the pala. Females most resemble *Sigara alternata*, which may have a smokey prothoracic lobe, but *C. audeni* can be identified by their longer, more acutely pointed metaxyphus, a slightly wider mesoepimeron, and a distinct widening of the hemelytra at the nodal furrow.

Cenocorixa dakotensis (Hungerford, 1928)

Distribution and Abundance: Very rare. Two females have been collected, one from L. Minnesuing in Douglas Co. 20 Nov. 1968 and the other from McKenna Pond in Dane Co. 17 Apr. 1978.

Habitat: It probably breeds in lakes.

Identification: The dark last metatarsal segment separates it from other *Cenocorixa* in this region.

Cenocorixa utahensis (Hungerford, 1925)

Distribution and Abundance: Rare. A male was collected from L. Nebagamon in Douglas Co. 20 Nov. 1968 and four males and a female were collected from a shallow, open, mud-bottomed pond in Manitowoc Co. 20 Apr. 1983.

Habitat: It probably breeds in lakes.

Identification: Males can be separated from *C. bifida* by the uninterrupted peg row of the pala. Females have a shorter costal area anterior to the nodal furrow.

Corisella edulis (Champion, 1901)

Distribution and Abundance: Rare statewide, mostly found in southwest third. County records: 5, 42, 53–54, 58, 60–62, 64.

Habitat: All collections were from open lentic habitats in autumn, suggesting that it breeds in such habitats.

Identification: The larger size, effaced base of the clavis, and the pale metatarsi separate *C. edulis* from the more common *C. tarsalis*.

Corisella tarsalis (Fieber, 1851)

Habitat: It apparently breeds in open ponds, especially in agricultural areas, and only occasionally flies into streams.

Identification: The small size and infuscate metatarsus distinguish it from *C. edulis*.
Cymatia americana Hussey, 1920

Distribution and Abundance: Rare. Six individuals have been collected from four ponds. County records: 42, 46, 61.

Habitat: It apparently breeds in shallow, open ponds.

Hesperocorixa atopodonta (Hungerford, 1927)

Distribution and Abundance: Abundant northern three-fourths, common southern fourth. County records: 1-72.

Habitat: It probably breeds in all types of lentic habitats, and frequently overwinters in streams.

Identification: A mesoepimeron that is the same width as the prothoracic lobe and a conspicuous V-shaped yellow band bordering the apex of the corium readily separate it from other Hesperocorixa. The elongate metaxyphus separates it from similarly sized Sigara.

Hesperocorixa interrupta (Say, 1825)

Distribution and Abundance: The only Wisconsin record is a male collected at Beaver Dam (Dodge Co.) by W. E. Snyder in 1909 (Hungerford 1948). This southern species may no longer occur in Wisconsin.

Identification: While similar to *H. lobata*, it can be separated from that species by its narrower interocular space and longer, more pointed metaxyphus. Males have a truncate pala that differs markedly from the rounded pala of *H. lobata*, and they also have an elongate and large strigil. Characters in the key separate it from the smaller *H. nitida*.

Hesperocorixa kennicottii (Uhler, 1897)

Distribution and Abundance: Fairly-common most areas, but apparently absent from counties bordering on L. Michigan. County records: 1, 3-10, 12-18, 20-21, 26, 28, 33-37, 39, 41-42, 44, 50-53, 55-58, 60-62, 67.

Habitat: It probably breeds in ponds. Most were collected from overwintering sites in larger streams.

Identification: The golden-brown membrane almost devoid of markings, the wide pale mesoepimeron, and the truncate or broadly rounded metaxyphus easily separate *H. kennicottii* from other large corixids.

Hesperocorixa laevigata (Uhler, 1893)

Distribution and Abundance: Rare statewide. County records: 7, 24, 36-37, 44, 46, 58, 60-61.

Habitat: It was collected in spring and autumn from ponds and margins of slow streams, but none were collected during the breeding season.

Identification: The somewhat reticulate pattern and non-rastrate pronotum distinguish it from other Hesperocorixa.

Hesperocorixa lobata (Hungerford, 1925)

Habitat: It apparently breeds in larger ponds and small lakes, and rarely enters streams to overwinter.

Identification: Separation from *H. interrupta* is discussed under that species, but their distribution does not overlap. No other large Hesperocorixa has figures coalescing along the edge of the membrane, although in *H. atopodonta* the membrane is bordered in yellow.

Distribution and Abundance: Rare statewide. County records: 1, 15, 32, 56, 58.

Habitat: Except for a female collected from a pond in mid-October, all were collected from margins of large rivers in autumn or spring.

Identification: The lack of markings on the clavis and effaced markings of the corium are distinctive.
Hesperocorixa michiganensis (Hungerford, 1926)

Habitat: It overwinters mostly in larger streams where it can be collected in numbers in autumn and spring. Summer collections indicate that it breeds in a variety of ponds, especially those in open areas.

Identification: The wide, very pale mesoepimeron, elongate metaxyphus, and distinct transverse pale markings on the hemelytra separate this species from all others of similar size.

Hesperocorixa millorella (Hungerford, 1926)

Habitat: Summer collections indicate it breeds in swamps and a wide variety of ponds. It overwinters mostly in larger streams.

Identification: The dark coloration, broad dark mesoepimeron, long metaxyphus, and two spines on the dorsal surface of the metafemur readily identify it.

Hesperocorixa obliqua (Hungerford, 1925)

Habitat: All collections have been from ponds and margins of lakes. It apparently breeds in shallow ponds and does not overwinter in streams.

Identification: The acute and obliquely produced upper distal angle of the male pala is distinctive, but females closely resemble *H. vulgaris*. The pale transverse lines of the corium are shorter and broader in *H. obliqua*, and seldom traverse the entire corium, while the longer lines in *H. vulgaris* extend entirely across the corium in the basal third. Almost all have a row of five spines ventrally on the posterior distal margin of the metafemur.

Hesperocorixa scabricula (Walley, 1936)

Distribution and Abundance: Fairly-common statewide. County records: 1–8, 11, 15, 18, 20–21, 23–36, 42, 46, 48, 52–53, 58, 60–61, 64, 68.

Habitat: It breeds in large ponds and small lakes, and does not fly to streams to overwinter. Except for two females collected in April 1983, after an exceptionally mild winter, all collections were made between 28 June and 4 November. Seventy percent of all individuals were collected in September and October. In July and August males slightly outnumbered females, but in September females outnumbered males 9 to 2 and in October and November they outnumbered males 30 to 1. I suspect that this species mates in late summer, oviposits in September and October, and overwinters primarily in the egg stage.

Identification: The combination of its very large size and very short pronotum readily distinguish this species.

Hesperocorixa semilucida (Walley, 1930)

Habitat: It overwinters in larger rivers. Some were collected from ponds in spring, but none were collected during the summer.

Identification: In size, and in the shape of the mesoepimeron and metaxyphus, it resembles *H. millorella* and *H. michiganensis*, but the longitudinal arrangement of markings on the corium and clavis readily separate it from those species.

Hesperocorixa vulgaris (Hungerford, 1925)

Distribution and Abundance: Abundant south, common north. County records: 1–72.

Habitat: It breeds in a variety of shallow ponds and overwinters either in these ponds or in larger streams.

Identification: The concave apex of the male pala is distinctive. Females can best be separated from other large *Hesperocorixa* with a narrow mesoepimeron by the very
narrow and long transverse pale marks of the corium. Almost all have a row of four spines ventrally on the posterior distal margin of the metafemur.

Palmacorixa buena Abbott, 1913
Habitat: It inhabits permanent ponds and margins of lakes and streams, probably breeding and overwintering in the same habitat.
Identification: Females are difficult to separate from *P. nana* and some cannot be identified with certainty. *P. buena* females are larger (5.4–6.5 mm) than those of *P. nana* (< 5.2 mm), but there is some size overlap. The dark base of the pronotum is usually wider than in *P. nana* and the pronotum lacks the strong antero-lateral depressions found in *P. gillettei*.

Palmacorixa gillettei Abbott, 1912
Distribution and Abundance: Quite rare statewide. County records: 1, 7, 9, 11, 13–14, 18, 21, 35, 38, 41, 48, 53–54, 60–62, 67.
Habitat: It has been collected only from streams, which it apparently uses as a breeding and overwintering site.
Identification: Males are easily identified by their dilated and flattened palae. The strong antero-lateral depression of the pronotum and its wide, dark posterior border distinguish females.

Palmacorixa nana Walley, 1930
Distribution and Abundance: Uncommon statewide. County records: 12, 14–15, 17–18, 21, 30, 33, 41, 45–48, 53, 61, 66, 68, 70.
Habitat: It was collected mostly from margins of streams, but was also found in permanent ponds. It probably breeds and overwinters in the same site.
Identification: The row of pegs on the mesofemur separates males from those of *P. buena*, and females generally can be separated from *P. buena* by the very narrow, often interrupted, dark posterior border of the pronotum and by their smaller size (less than 5.2 mm).

Ramphocorixa acuminata (Uhler, 1897)
Distribution and Abundance: Rare, with collections from ponds in only three southern counties. County records: 50, 61, 72.
Habitat: It probably breeds in ponds in open areas.
Identification: The effaced pattern of the clavis and corium separate it from all other small Wisconsin corixids. The male is also recognizable because it has an acuminate vertex.

Sigara alternata (Say, 1825)
Distribution and Abundance: Abundant southern two-thirds, common north. County records: 1–72.
Habitat: It breeds in shallow, open ponds and frequently flies to streams to overwinter.
Identification: The pointed metaxyphus forms an angle of about 70° at the tip. This, the alternate dark and pale transverse markings on the clavis, and the interconnected transverse pale marks in the middle of the corium that leave longitudinal dark bands laterally, separate it from other species with a narrow mesoepimeron.

Sigara bicoloripennis (Walley, 1936)
Habitat: It apparently breeds in shallow, open ponds and flies to larger streams to overwinter.
Identification: The very short, rounded metaxyphus, and the broader and elongate transverse pale marks on the corium distinguish it from *S. alternata*, and from *S. defecta*, which has very short pale marks.

Sigara compressoidea (Hungerford, 1928)

Distribution and Abundance: Common northern half, uncommon south. County records: 1–18, 20–22, 25, 27–41, 48, 57, 61, 64, 67, 70, 72.

Habitat: It apparently breeds in ponds and other lentic habitats, and overwinters mostly in streams.

Identification: The pale longitudinal line on the pronotum and the effaced membrane are distinctive. It could be confused only with *S. mackinacensis*, but lines on the basal third of the clavus are mostly entire and not zig-zag, and the corial pattern is transverse and not longitudinal.

Sigara conocephala Hungerford, 1926

Distribution and Abundance: Fairly-common east, especially northeast, uncommon to rare elsewhere. County records: 1, 4, 7, 9, 11, 13, 17–18, 25, 28, 37, 40, 44, 47–51, 58–59, 61.

Habitat: It probably breeds in ponds and overwinters mostly in streams.

Identification: The large size and produced vertex of the male are distinctive. The unusually long palae separate females from other large *Sigara*.

Habitat: It apparently breeds in ponds and small lakes and overwinters mostly in streams and lakes.

Identification: The large size and broadly rounded to truncate metaxyphus readily distinguish this species from other large *Sigara*.

Sigara decoratella (Hungerford, 1926)

Habitat: It probably breeds mostly in ponds and overwinters in streams.

Identification: The distinctly transverse pale marks that almost completely traverse the corium and the reduced number of lower palmer hairs distinguish *S. decoratella* from other large *Sigara*.

Sigara defecta Hungerford, 1948

Habitat: It probably breeds in open ponds and overwinters in streams or lakes.

Identification: The male pala is distinctive. Females most closely resemble *S. bicoloripennis* and *S. mallettensis*. Corial pale marks are distinctly transverse in *S. bicoloripennis* and distinctly longitudinal in *S. mallettensis*; they are indistinctly longitudinal in *S. defecta*. The anal lobes are distinctly notched mesally; they are only slightly notched in *S. mallettensis* and unnotched in *S. bicoloripennis*. *S. hubbelli*, which has not been collected in Wisconsin, has the markings on the membrane obscure and almost effaced.

Sigara dolabra Hungerford and Sailer, 1942

Distribution and Abundance: Quite rare extreme north, absent elsewhere. County records: 1–4, 11–13, 15–19.

Habitat: It apparently breeds in ponds and overwinters in streams.

Identification: The very long, pointed metaxyphus and a mesoepimeron as wide as the prothoracic lobe will distinguish this species from others of a similar size.
Sigara douglasensis (Hungerford, 1926)

Habitat: It appears to breed in ponds and swampy areas and overwinter in streams.

Identification: The wavy longitudinal lines on the clavis and corium are distinctive.

Sigara grossolineata Hungerford, 1948

Distribution and Abundance: Generally common statewide. County records: 1–9, 11–30, 33–48, 50–72.

Habitat: It breeds and overwinters along margins of streams and in spring ponds.

Identification: It is closely related to *S. modesta* (Abbot 1916), which has not been collected in Wisconsin, but may occur in the south. In *S. modesta* the scent gland osteole is only 1/2 to 3/5 from the tip of the mesoepimeron to the lateral bend, and not close to the lateral bend as in *S. grossolineata*. Also, in *S. modesta* the dark pattern of the clavis is effaced along the margin bordering the pronotum, while in *S. grossolineata* the lines may become narrow, but they remain distinct.

Sigara johnstoni Hungerford, 1928

Distribution and Abundance: Uncommon to fairly-common northwest quarter, and in some central counties, absent south and east. County records: 1, 3–5, 7–18, 20, 26–27, 29–34, 36–37.

Habitat: It apparently breeds in ponds and overwinters in larger streams.

Identification: It most closely resembles the smaller *S. knighti*, but in that species the anal lobes of the female are notched and the male has a double peg row on the pala. A distinctive characteristic of *S. johnstoni* is the slightly notched metaxyphus. In some individuals the median pale line on the pronotum is obscure.

Sigara knighti Hungerford, 1948

Distribution and Abundance: Uncommon northern third, absent elsewhere. County records: 1–2, 4, 6, 9, 11–14, 17–20, 30.

Habitat: It apparently breeds mostly in spring ponds, but may breed in other habitats. It overwinters mostly in streams.

Identification: Males have two peg rows on their palae and females can be separated from *S. johnstoni* and *S. variabilis* by their mesally notched anal lobes.

Sigara lineata (Forster, 1771)

Distribution and Abundance: Common to abundant statewide in large, sandbottomed rivers; apparently absent from counties bordering L. Michigan. County records: 3, 7–16, 18–19, 21, 26, 29, 34, 36–37, 39, 41, 51, 53–55, 57–58, 60–61, 63, 66.

Habitat: It breeds and overwinters along margins of streams with a sandy substrate.

Identification: The very small size and striped hemelytra are distinctive.

Sigara mackinacensis (Hungerford, 1928)

Distribution and Abundance: Uncommon to fairly-common north and west-central, absent east and south. County records: 1, 3–15, 17–19, 21, 27, 29–33, 36–37.

Habitat: It probably breeds in swamps or ponds and overwinters mostly in larger streams.

Identification: The distinctly marked membrane separates it from *S. compressoidea*, the only species with which it may be confused.

Sigara macropala (Hungerford, 1926)

Distribution and Abundance: Fairly-common northwest, northeast and west central, but not found north central, east central, or south. County records: 1–4, 8, 18, 31, 34, 36.

Habitat: It breeds in lakes and large ponds, and overwinters in its breeding sites and only occasionally in larger streams.

Identification: The large dorsal extension of the male pala is distinctive. The reduced number of black bars on the pronotum distinguishes it from similar species.
1984 THE GREAT LAKES ENTOMOLOGIST 45

Sigara mathesoni Hungerford, 1948

Habitat: It breeds in spring ponds and spring-fed streams, and overwinters in its breeding sites or in larger streams.

Identification: The median brown stripe on the head and the deep incision at the lateral bend of the mesoepimeron are distinctive.

Sigara mullettensis (Hungerford, 1928)

Habitat: It apparently breeds in ponds and overwinters mostly in streams.

Identification: The double peg row of the male pala separates it from similar species. Females could be confused with S. defecta, which also tends to have a longitudinal corial pattern, but in that species the anal lobes are distinctly notched mesally. They are only slightly notched in S. mullettensis.

Sigara penniensis (Hungerford, 1928)

Distribution and Abundance: Uncommon northern two-thirds, generally absent from southern third. County records: 1, 3–13, 15, 17–18, 21, 24, 30–33, 37–38, 66.

Habitat: It probably breeds in ponds and overwinters mostly in larger streams.

Identification: The large size, narrow interocular space, and longitudinal arrangement of the corial markings separate it from other Sigara.

Sigara signata (Fieber, 1851)

Distribution and Abundance: Found statewide, often common. County records: 4, 7–8, 11–19, 21, 26–29, 32–39, 50, 54, 57–61, 64, 66.

Habitat: It breeds and overwinters in streams.

Identification: The bold longitudinal stripes on the hemelytra and wide mesoepimeron separate it from other medium-sized Sigara.

Sigara solensis (Hungerford, 1926)

Habitat: It apparently breeds in spring ponds and small lakes, and overwinters mostly in larger streams.

Identification: The long metaxyphus, wide mesoepimeron, and three or four pegs on the dorsum of the metafemur are distinctive.

Sigara transfigurata (Walley, 1930)

Distribution and Abundance: Very rare, restricted to the north. County records: 10–11, 16–17.

Habitat: It probably breeds in lakes and overwinters in them or in large streams.

Identification: The bold cross-bars, short pronotum, and somewhat produced vertex are distinctive.

Sigara trilineata (Provancher, 1872)

Distribution and Abundance: Found statewide, often common. County records: 4, 7–8, 11–19, 21, 26–29, 32–39, 50, 54, 57–61, 64, 66.

Habitat: It breeds and overwinters in streams.

Identification: The bold longitudinal stripes on the hemelytra and wide mesoepimeron separate it from other medium-sized Sigara.

Sigara variabilis (Hungerford, 1926)

Distribution and Abundance: Rare north, uncommon near Mississippi River, absent southeast. County records: 1, 5, 13, 16, 24, 26, 33–34, 36–37, 51–52, 55.
Habitat: It probably breeds in larger ponds and lakes, and overwinters in streams or its breeding sites.

Identification: The wide pale bands on the corium distinguish it from similar species. Females most resemble *S. johnstoni*, but have a slight mesal notch in the anal lobes and an unnotched metaxyphus.

Trichocorixa borealis Sailer, 1948

Distribution and Abundance: Generally common east, mostly uncommon west and north. County records: 3, 7-8, 12, 15-16, 24, 26, 29, 34-37, 39-44, 46-48, 50-61, 63-65, 67-72.

Habitat: It apparently breeds in lakes and ponds, and perhaps even along streams. It overwinters mostly in streams and lakes.

Identification: The rather broad, elongate strigil of the male is widened at the bend, but could be confused with the slightly narrower strigil of *T. kanza*. Females are distinctive, having a long postnodal pruinose area and a distinct outward projection at the anterior end of the polished prenodal area.

Trichocorixa calva (Say, 1832)

Distribution and Abundance: Common south, absent north. County records: 24, 32, 36-37, 39-43, 46-48, 50-72.

Habitat: It probably breeds in ponds and sloughs and overwinters in streams.

Identification: The extremely narrow strigil of the male is distinctive. Females resemble *T. kanza*, but lack patches of setae on the right side of the seventh abdominal sternum.

Trichocorixa kanza Sailer, 1948

Distribution and Abundance: Uncommon to rare southern third, absent elsewhere. County records: 39-40, 55-56, 61-62, 64.

Habitat: It probably breeds in ponds and overwinters in streams.

Identification: Males are very similar to *T. borealis*, but the strigil is narrower and not distinctly widened at the bend. The two or three small and distinct patches of setae on the right side of the seventh abdominal sternum of the female are distinctive.

Trichocorixa naias (Kirkaldy, 1908)

Habitat: It breeds in ponds and rarely flies to streams. Only two were collected before mid-June, suggesting that this species may overwinter as an egg.

Identification: The absence of a postnodal pruinose area in the female and the small rounded strigil of the male separate this species from other Wisconsin *Trichocorixa*. *Trichocorixa macroceps*, which has not been collected, is most similar, but it is smaller and has a very short pronotum.

NAUCORIDAE

Only one species of “creeping water bug” has been found in Wisconsin, and it is unlikely that any others will be found.

Pelocoris femoratus (Palisot de Beauvois, 1805)

Distribution and Abundance: Uncommon southern Wisconsin, absent north. County records: 36, 56-58, 61, 67, 71.

Habitat: It has been collected from spring ponds and backwaters or impoundments of streams where it breeds. It apparently overwinters in its breeding sites or along margins of streams.

Identification: The flat, oval shape, extremely broad profemur, and 8.2–10.2 mm size range easily distinguish it from all other aquatic Hemiptera.
There are only four species and two genera of "water scorpions" that occur in Wisconsin, and only one species that is widespread and frequently encountered. All the species live primarily in lentic habitats, but frequently fly to larger streams to overwinter. The family in North America was revised by Hungerford in 1922.

Key to species of Nepidae in Wisconsin

1. Body oval, more than 1/3 as wide as long; length 16–19 mm

 Nepa apiculata

1'. Body slender, subcylindrical, stick-like; more than 23 mm long

 Ranatra

2(1'). Ranatra—Antenna simple, distal end of penultimate segment without lateral prolongation; length 23–27 mm

 R. kirkaldyi

2'. Penultimate segment of antenna with lateral prolongation distally

 3

3(2'). Lateral prolongation at distal end of penultimate antennal segment almost as long as last antennal segment; length 28–40 mm

 R. fusca

3'. Lateral prolongation at distal end of penultimate antennal segment less than half as long as last antennal segment; length 25–33 mm

 R. nigra

Nepa apiculata Uhler, 1862

Distribution and Abundance: Rare south, absent north. County records: 40, 54, 57–58, 61, 63, 68.

Habitat: Almost all collections were from debris in streams in early spring or late autumn, suggesting it overwinters in such sites. No summer collections were made, so its breeding habit remains unknown.

Identification: The oval shape and long apical respiratory filament distinguish it from all other aquatic Hemiptera.

Ranatra fusca Palisot de Beauvois, 1805

Habitat: It breeds in many types of lentic habitats, from small ponds to lakes, and often flies to streams to overwinter.

Identification: The F-shaped antenna separates it from other _Ranatra_. It also tends to be larger than other Wisconsin species.

Ranatra kirkaldyi Bueno, 1905

Distribution and Abundance: Rare, but probably distributed statewide. County records: 44, 60.

Habitat: It breeds in lakes, sloughs, and other larger bodies of water that are difficult to sample, which probably accounts for its apparent rarity. Some may fly to streams to overwinter.

Identification: The simple antenna is distinctive. The profemur is not narrowed in the middle as it is in _R. fusca_ and _R. nigra_.

Ranatra nigra Herrich-Schaffer, 1853

Distribution and Abundance: Uncommon to rare statewide. County records: 15, 25, 33, 44, 51, 58, 61, 70–71.

Habitat: It breeds primarily in larger and deeper lentic habitats and overwinters in its breeding sites or in streams.

Identification: The short prolongation of the penultimate antennal segment separates it from the other two species in Wisconsin.
Nine species and two genera of "backswimmers" have been found in Wisconsin. All inhabit lentic habitats, but at least two species of Notonecta fly to streams in the autumn to overwinter. Adult Buenoa have not been collected before 23 June, suggesting that, like Notonecta borealis, they overwinter as eggs. Identification of Notonecta species presents no problems, and all species can be easily identified in the field. Hungerford revised the genus in 1933, and in 1945 an additional species was described from New England by Hutchinson. Buenoa, especially females, are much more difficult to identify. Since most species of Buenoa inhabit deeper lentic habitats, they are difficult to collect and are probably under-represented in collections. Truxal revised Buenoa in 1953.

Key to species of Notonectidae in Wisconsin

1. Slender; antennae 3-segmented; length less than 8.5 mm Buenoa 2
1'. Robust; antennae 4 segmented; length more than 8.5 mm ... Notonecta 5
2(1).

Buenoa—Terminal segment of rostrum as long as penultimate segment; wings without markings; pronotum broadest at base, where it is distinctly wider than head; profemur of male distinctly narrowed toward apex; length 7.0-8.2 mm .. B. margari teasea

2'. Terminal segment of rostrum distinctly shorter than penultimate segment; wings almost always with dark marks, especially near humeral angle; pronotum narrower than head, except for inflated pronotum of male B. limnocastoris; profemur of male almost as broad at apex as at base 3
3(2'). Infuscations on wings, if present, limited to lateral edge anteriorly; no infuscations on dorsum; protibia of male almost as wide at base as profemur; metatarsal setae infuscate dorsally, but never black; length 6.0-7.0 mm B. macrotibialis

3'. Lateral infuscations on wings near anterolateral angle and usually also in apical fourth; infuscations often present on dorsum; protibia of males about half as wide as profemur; metatarsal setae may be black dorsally 4
4(3'). Infuscation near anterolateral margin of wing linear, posterior infuscation small or absent; metatarsal setae black dorsally, or nearly so; prothorax of male not inflated, distinctly narrower than head; length 5.0-6.0 mm ... B. con fusus
4'. Infuscation near anterolateral angle of wing widest at base, posterior infuscation large, at least half width of wing; metatarsal setae infuscate dorsally, but not black; prothorax of male inflated, wider than head; length 5.8-7.5 mm B. limnocastoris
5(1'). Notonecta—Hemelytra with an irregular pattern of black and orange marks; length 13.1-14.5 mm .. N. irrorata
5'. Hemelytra with large white areas, never with orange 6
6(5'). Mesotrochanter acutely angulate posteriorly; small, length 9.0-10.2 mm N. lunata
6'. Mesotrochanter rounded posteriorly; larger, at least 10.5 mm long 7
7(6'). Sternal keel of abdomen completely covered with long setae; smaller, length 10.9-12.3 mm .. N. undulata
7'. Middle of sternal keel bare on fourth abdominal sternum; larger, at least 12.4 mm long ... 8
8(7'). Scutellum and most of hemelytra white or pale yellow; length 12.9-14.8 mm ... N. borealis
8'. Scutellum black, and with dark markings on hemelytra; length 14.0-15.0 mm N. insulata

Buenoa confusa Hungerford, 1953

Habitat: It inhabits weedy permanent ponds and is found in shallower habitats than other species of Buenoa. It probably overwinters as an egg.

Identification: The small size (6.0 mm or less) and black or nearly black metatarsal setae separate it from other Buenoa. Males do not have any of the distinctive characters found in other species of Buenoa in Wisconsin.

Buenoa limnocastoris Hungerford, 1923

Habitat: It apparently breeds in deep ponds or small lakes and overwinters as an egg.
Identification: The inflated and rounded pronotum of the male is distinctive. Females resemble B. macrotibialis and the smaller B. confusa. They have an elongate infuscation along the margin of the wings in the basal third. This mark is broadest basally and narrowed posteriorly, while in B. macrotibialis this mark is uniformly narrow or absent.

Buenoa macrotibialis Hungerford, 1924

Habitat: It apparently breeds in small lakes or large ponds and overwinters as an egg.
Identification: The very wide protibia of males is distinctive. Females can be separated from B. limnocastoris by their less pronounced wing markings as mentioned above, and from B. confusa by their larger size.

Buenoa margaritacea Torre-Bueno, 1908

Distribution and Abundance: Generally uncommon south and rare north. County records: 1, 25, 53, 58, 61, 71.
Habitat: It inhabits mostly larger ponds and probably overwinters as an egg.
Identification: Its large size, long apical segment of the rostrum, broad pronotum, and general lack of pigmentation make this species easy to identify.

Notonecta lunata Hungerford, 1926

Habitat: It is most abundant in larger ponds and frequently flies to larger streams to overwinter.
Identification: The small size, pale scutellum, and acutely angulate mesotrochanter are distinctive.

Notonecta borealis Bueno and Hussey, 1923

Distribution and Abundance: Rare extreme north, absent elsewhere. County records: 2, 18–19.
Habitat: It has been collected only from permanent woodland ponds. All adults were collected between 9 July and 16 August, which supports Hungerford’s contention (1933) that N. borealis overwinters as an egg.
Identification: The large size, pale scutellum and hemelytra, and bare sternal keel on the fourth abdominal segment are distinctive.

Notonecta irrutata Uhler, 1879

Habitat: It has been found mostly in small ponds, especially in wooded areas and river bottoms, and frequently flies to streams to overwinter.
Identification: The black and orange hemelytral pattern is unique.

Notonecta insulata Kirby, 1837

Published by ValpoScholar, 1984
Habitat: It probably breeds in a variety of smaller ponds and overwinters either in these ponds or in deeper lentic habitats.

Identification: With its black scutellum and light hemelytra it resembles *N. undulata*, but it is distinctly larger and the hemelytra of live specimens are more cream-colored than white. The bare keel on the fourth abdominal sternum positively separates it from *N. undulata*.

Notonecta undulata Say, 1832

Distribution and Abundance: Common statewide. County records: 1–50, 52–72.

Habitat: It breeds in small, shallow weedy ponds and frequently invades temporary ponds. It overwinters mostly in ponds deep enough to not freeze to the bottom.

Identification: It is larger than *N. lunata* and smaller than the other species. Separation from the larger *N. insulata* has been discussed above. Teneral specimens have a pale scutellum and resemble *N. lunata*, but their mesotrochanter is rounded.

PLEIDAE

Only one species of "pygmy backswimmer" has been found in Wisconsin, and it is the only species known to occur in this region of North America.

Neoplea striola (Fieber, 1844)

Distribution and Abundance: Ranges from abundant south to fairly-common north. County records: 1–10, 12, 14–22, 24–30, 32, 34–72.

Habitat: It is frequently abundant in permanent, weedy ponds, especially those that contain *Lemna* (duckweed). It is flightless and remains in the ponds in which it breeds. It is able to survive occasional drying of its habitat.

Identification: Its very small size (2.0–2.2 mm), tan color, and hemispherical shape distinguish it from all other aquatic Hemiptera.

LITERATURE CITED

