Non-decreasing Sequences

Alexander Bruno
Valparaiso University, alexander.bruno@valpo.edu

Amy Klass
Valparaiso University, amy.klass@valpo.edu

Follow this and additional works at: http://scholar.valpo.edu/fires

Recommended Citation
http://scholar.valpo.edu/fires/83

This Poster Presentation is brought to you for free and open access by the Office of Sponsored and Undergraduate Research at ValpoScholar. It has been accepted for inclusion in Fall Interdisciplinary Research Symposium by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at scholar@valpo.edu.
Non-Decreasing Sequences

Alexander Bruno and Amy Klass

Advisor: Dr. Jon Beagley

Abstract

Non-decreasing sequences are a generalization of binary covering arrays, which has made research on non-decreasing sequences important in both math and computer science. The goal of this research is to find properties of these non-decreasing sequences as the variables d, s, and t change. The goal is also to explore methods for creating a maximum length non-decreasing sequence for a given strength and size set. Through our research, we discovered and proved basic properties of these non-decreasing sequences. In addition to this, we can describe a method we used while trying to find the maximum length of a sequence.

Definitions and Notation

- **Let S** be a set of s elements
- The **strength** of non-decreasing sequence is the amount of subsets whose union we consider, and is represented using d
- A **non-decreasing sequence** of strength d is a sequence of non-empty subsets, $\{S_1, S_2, \ldots, S_t\}$, where the union of any d previous subsets does not contain any subsequent subset
- The number of subsets in a non-decreasing sequence is called the **length**, t
- $NDS(d, s, t)$ is the set of non-decreasing sequences with strength d, s elements and length t
- **NDST** (d, s) is the maximum t such that $NDS(d, s, t)$ is non-empty
- Let r_j be the number of elements in the subset S_j

Binary Arrays

- Represent a non-decreasing sequence using an $s \times t$ binary array
- Rows represent elements of S
- Columns represent subsets of non-decreasing sequence

Basic Results

Theorem 1 - Permuting rows in a binary array gives another $NDS(d, s, t)$.

Theorem 2 - If the union of any d subsets contain all elements in S, no subsets can be added to the sequence.

Theorem 3 - Every subset in $NDS(d, s, t)$ must be distinct for $d \geq 1$.

Theorem 4 - $NDS(d, s, t) \subseteq NDS(d, s + 1, t)$

Corollary 5 - $NDST(d, s) \geq k \cdot NDST(d, s)$, where $k \in \mathbb{Z}$.

Standard Sequence

Theorem 6 - There exists an $NDS(d, s, t)$ where the first s subsets are of size 1. We call this a **standard non-decreasing sequence**.

Bounds

- **Gives range for** $NDST(d, s)$
- **Lower bound** is the length of sequence constructed for a given d, s
- **Upper bound** initially $2^s - 1$, number of nonempty subsets possible for any set S with s elements
- **Upper bound decreased using Theorems 7, 8, and 9**

<table>
<thead>
<tr>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>2^s - 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>31</td>
</tr>
<tr>
<td>11</td>
<td>13</td>
<td>63</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>127</td>
</tr>
</tbody>
</table>

Table 1. Bounds for $d = 2$

Future Work

- Find exact formula for $NDST(d, s)$
- Find different computational methods
- Find relation to binary covering arrays
- Effect of permuting columns
- Find bounds for larger d and s values

References

Acknowledgements

MSIEED Program sponsored by NSF (Grant No. 1068346)

Valparaiso University Mathematics and Statistics Department and Professor Jon Beagley