The Great Lakes Entomologist

Vol. 53, Numbers 1 & 2 - Spring/Summer 2020

September 2020

Full issue for TGLE Vol. 53 Nos. 1 & 2

Follow this and additional works at: https://scholar.valpo.edu/tgle

Part of the Entomology Commons

Recommended Citation

DOI: https://doi.org/10.22543/0090-0222.2387
Available at: https://scholar.valpo.edu/tgle/vol53/iss1/1

This Full Issue is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at scholar@valpo.edu.
THE MICHIGAN ENTOMOLOGICAL SOCIETY 2019–20

OFFICERS

President
President Elect
Immediate Past President
Secretary
Treasurer
Member-at-Large
Member-at-Large
Member-at-Large
Member-at-Large
Lead Journal Scientific Editor
Lead Journal Production Editor
Associate Journal Editor
Newsletter Editor
Webmaster

Elly Maxwell
Duke Elsner
David Houghton
Adrienne O’Brien
Angie Pytel
Thomas E. Moore
Martin Andree
James Dunn
Ralph Gorton
Kristi Bugajski
Alicia Bray
Anthony Cognato
Julie Craves
David Houghton
Ronald Priest
William Ruesink
William Scharf
Daniel Swanson
Crystal Daileay and Duke Elsner
Mark O’Brien

The Michigan Entomological Society traces its origins to the old Detroit Entomological Society and was organized on 4 November 1954 to “. . .promote the science of entomology in all its branches and by all feasible means, and to advance cooperation and good fellowship among persons interested in entomology.” The Society attempts to facilitate the exchange of ideas and information in both amateur and professional circles, and encourages the study of insects by youth. Membership in the Society, which serves the North Central States and adjacent Canada, is open to all persons interested in entomology.

There are five paying classes of membership:

- Active—annual dues $25.00
- Student (to 12th grade)—annual dues $12.00
- Institutional—annual dues $45.00
- Sustaining—annual contribution $35.00 or more
- Life—$500.00

Dues are paid on a calendar year basis (Jan. 1–Dec. 31). Memberships accepted before July 1 shall begin on the preceding January 1; memberships accepted at a later date shall begin the following January 1 unless the earlier date is requested and the required dues are paid. All members in good standing receive the Newsletter of the Society. All active and sustaining members may vote in Society affairs. All dues and contributions to the Society are deductible for Federal income tax purposes.

SUBSCRIPTION INFORMATION

The journal is published online and open access, there is no subscription needed. Articles are available in pdf format and can be printed from the website, free of charge. To view current and past volumes, please visit http://scholar.valpo.edu/tgle/.
The emerald ash borer (EAB), *Agrilus planipennis* Fairmaire (Coleoptera: Buprestidae) was initially identified in June, 2002 from beetles collected in the Detroit, Michigan area (Haack et al. 2002, Cappaert et al. 2005, Herms and McCullough 2014). Green ash (*Fraxinus pennsylvanica*) and white ash (*F. americana*) are commonly planted as landscape and parkway trees throughout the eastern and midwestern United States comprising 10% to greater than 30% of the urban forest tree canopy (Raupp et al. 2006). More recently, blue ash (*F. quadrangulata*) is being considered for parkway and landscape plantings (Dirr 2009; author’s personal communication with green industry professionals). Annual mid-May, June, July, and September basal soil drenches, basal broadcast applications, and basal trunk spray applications of imidacloprid, clothianidin, dinotefuran used alone, imidacloprid + clothianidin, dinotefuran + clothianidin, and trunk injections of emamectin benzoate were evaluated. Imidacloprid applied alone at 0.57 g a.i./2.54 cm dbh or greater, clothianidin and dinotefuran alone at 0.93 g a.i./2.54 cm dbh or greater, imidacloprid + clothianidin at 0.57 g a.i. + 0.28 g a.i./2.54 cm dbh or greater, dinotefuran + clothianidin at 0.47 g a.i. + 0.46 g a.i./2.54 cm dbh or greater, or emamectin benzoate applied at 0.2 to 0.6 g a.i./2.54 cm dbh provided good protection of ash trees up to 61 cm mean dbh. Canopy thinning was strongly correlated with the number of larval galleries/m² ($R^2 = 0.95; P < 0.001$) and adult EAB exit holes per m² of branch surface area ($R^2 = 0.94; P = 0.002$). Severe drought conditions may have contributed to a differential PCL response for treated large green ash trees growing in narrow residential parkways compared to trees growing in open park-like-landscape settings. Choice of active ingredient(s), product formulation(s), application methods and timing, EAB pressure, host susceptibility, and abiotic factors, and their role in implementing an EAB pest management plan are discussed.

Keywords: ash, clothianidin, dinotefuran, emamectin benzoate, emerald ash borer, imidacloprid
by homeowners. Other treatment application methods including soil injections, basal soil drenches, basal broadcast applications, and basal trunk sprays of neonicotinoid class insecticides are alternatives available for use by professionals and homeowners alike for EAB management. These treatment methods require minimal equipment, are easier to apply compared to soil and trunk injection methods, and have been shown to be efficacious for both homeowners and green industry professionals for protecting ash trees up to 38 cm dbh (Smitley et al. 2010a, b; McCullough et al. 2011, 2019; Herms et al. 2014, 2019; Bick et al. 2018).

For larger trees over 38 cm dbh, the use of soil injections and basal soil drenches of neonicotinoid insecticides have not always proven to be effective for trees over 38 cm dbh and when under intense EAB pressure (Smitley et al. 2010b). Early on, rates and practices of applying imidacloprid specified a linear relationship between tree dbh and application rates. However, research by LeGoff and Ottorini (1996) and McCullough and Siegert (2007) have shown that as ash tree dbh doubles, tree surface area increases five-fold. These findings suggest the need to increase treatment rates for larger trees to account for the larger surface area and phloem biomass (Smitley et al. 2010b). With EPA approval of the 2× rate of imidacloprid for ash trees with trunk diameters greater than 38 cm, and the availability of additional neonicotinoid insecticides and emamectin benzoate, more reliable protection of ash trees over 38 cm dbh is a possibility. More recent studies by Smitley et al. (2015) and Bick et al. (2018) have shown that a spring and/or fall application of imidacloprid at the 2× rate can be effective in protecting trees over 38 cm dbh from EAB. Therefore, the objectives of this study were to evaluate the efficacy of systemic insecticides (imidacloprid, dinofuran, clothianidin, and emamectin benzoate) and their combinations for control of the emerald ash borer (EAB) on green, white, and blue ash trees greater than 38 cm dbh by comparing various modes of application (soil application, basal bark spray, trunk injection), rate and number of applications, and timing. More specifically, we evaluated the efficacy of 1× and 2× rates of basal soil drenches of imidacloprid applied alone or in combination with clothianidin plus a 2-1-1 fertilizer; basal broadcast applications of imidacloprid in combination with a 2-1-1 fertilizer; basal soil drenches of clothianidin and dinofuran each applied alone or in combination; a basal broadcast application of dinofuran; basal trunk sprays of clothianidin and dinofuran each applied alone; and trunk injections of emamectin benzoate.

Materials and Methods

Ten different studies, each of at least four years’ duration, and consisting of three to seven different treatments per study, were conducted between 2007 and 2015 on green, white, and blue ash parkway and park trees at sites in the greater Chicago, Illinois area. Depending on tree availability, five to ten single tree replicates were established per treatment rate per study site along with an equal number of untreated controls. Trees at each study site were randomly assigned a treatment or were designated an untreated control. Only healthy, pest and disease free, and undamaged trees were selected, and all study trees were in good condition at the beginning of their respective studies. The only abiotic event was the unforeseen 2012 drought which impacted all of the trees in seven of the ten studies. Six of the ten studies included trees less than 50 cm dbh, and four studies included trees greater than 50 cm dbh. Here, trees less than 50 cm dbh less will be treated as smaller trees and trees greater than 50 cm will be considered large. All study trees were evaluated in June and August of each year for percent canopy thinning (nearest 10%) by two individual evaluators as described by Smitley et al. (2008) except for the Homewood and Fermi Lab Village study sites, which were evaluated only once per season. Percent canopy loss (PCL) is used for comparing insecticide efficacy, application methods and timing, and insecticide formulations. A stand-alone fertilizer treatment was not included in the trials because previous studies have shown fertilizer treatments have no effect on ash resistance to EAB (Tanis and McCullough 2015). All Merit and Bayer Advanced Tree and Shrub (BATS) products were formulated by Bayer Corp. (Research Triangle Park, NC, U.S.), Xytect products were formulated by Rainbow Treecare Scientific Advancements, (Minnetonka, MN, U.S.), Safari products by Valent Corporation (Walnut Creek, CA, U.S.), and the TreeAge product was formulated by ArborJet Inc. (Woburn, MA, U.S.). A complete listing, by study site, of the number of single tree replicates (N), chemical treatments by trade name or acronym, rate (total active ingredient per cm dbh) applied per year, application method, and application timing is presented in Table 1. All treatments are identified in the narrative and data tables using trade names and/or acronyms, and their corresponding percent active ingredient.

Thirty large (mean dbh = 58 cm; range = 51–89 cm) green ash parkway trees, growing in Skokie, Illinois, were used to evaluate 1×, 1.5×, and 2× rates of imidacloprid applied

https://scholar.valpo.edu/tgle/vol53/iss1/1
DOI: 10.22543/0090-0222.2387
Table 1. List of chemical treatments by study site, number of single tree replicates per treatment (N), trade name or acronym, common name, rate of active ingredient applied per year, and application method and timing.

<table>
<thead>
<tr>
<th>Study site</th>
<th>N</th>
<th>Trade name Or Acronym</th>
<th>Common name</th>
<th>Rate per year (A.I. g/2.54 cm dbh)</th>
<th>Application method and timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skokie (SK) (2007–2011)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean dbh = 58 cm (range=51–89 cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Xytect 75WSP</td>
<td>imidacloprid</td>
<td>0.56</td>
<td>BSD³ (one 1X application in mid-May)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Xytect 75WSP</td>
<td>imidacloprid</td>
<td>0.84</td>
<td>BSD (one 1.5X application in mid-May)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Xytect 75WSP</td>
<td>imidacloprid</td>
<td>1.12</td>
<td>BSD (one 2X application in mid-May)</td>
<td></td>
</tr>
<tr>
<td>Aurora (AU) (2009-2012)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean dbh = 43 cm (range= 30-66 cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>BATSC¹</td>
<td>imidacloprid + clothianidin</td>
<td>0.58 + 0.30</td>
<td>BSD (one mid-May and one mid-June application)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>BATSCF1²</td>
<td>imidacloprid + clothianidin</td>
<td>0.76 + 0.38</td>
<td>BBA⁴ (one mid-May and one mid-June application) + 2-1-1 fertilizer</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>BATSC2X³</td>
<td>imidacloprid + clothianidin</td>
<td>1.16 + 0.58</td>
<td>BSD (one 2X application in mid-May)</td>
<td></td>
</tr>
<tr>
<td>Homewood (HW) (2008-2011)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean dbh = 41 cm (range= 36-61 cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Merit 2F</td>
<td>imidacloprid</td>
<td>0.58</td>
<td>BSD (one mid-May application)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Merit 2F</td>
<td>imidacloprid</td>
<td>0.58</td>
<td>BSD (one mid-Sept. application)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>BATSC</td>
<td>imidacloprid + clothianidin</td>
<td>0.58 + 0.30</td>
<td>BSD (one mid-May application)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>BATSCF2⁴</td>
<td>imidacloprid + 2-1-1 fertilizer</td>
<td>0.51</td>
<td>BBA (one mid-May application)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>BATSCF3⁵</td>
<td>imidacloprid + clothianidin</td>
<td>0.58 + 0.30</td>
<td>BBA (one mid-May application) + 2-1-1 fertilizer</td>
<td></td>
</tr>
<tr>
<td>Riverside (RV), Hinsdale (HI), Naperville (NV), and Woodridge (WR) (2012-2015)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean RV dbh=61cm (range=51–91 cm) and Mean dbh = 26 cm (range = 18.8-36 cm); Mean HI dbh=51 cm (range=46–91); Mean NV dbh=58 cm (range=51-64); Mean WR dbh=37 cm (range=25-48 cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Merit 2F</td>
<td>imidacloprid</td>
<td>1.16</td>
<td>BSD (one mid-May application at 2X rate)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>BATSC</td>
<td>imidacloprid + clothianidin</td>
<td>0.58 + 0.30</td>
<td>BSD (one mid-May application at 2X rate)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>BATSCF1</td>
<td>imidacloprid + clothianidin</td>
<td>0.76 + 0.58</td>
<td>BBA (one mid-May application at 2X rate) + 2-1-1 fertilizer</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>BATSCF4⁶</td>
<td>imidacloprid</td>
<td>0.92 + fertilizer</td>
<td>BBA (one mid-May application at 2X rate)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>BATSCF7</td>
<td>imidacloprid</td>
<td>1.09 + fertilizer</td>
<td>BSD (one mid-May application at 2X rate)</td>
<td></td>
</tr>
</tbody>
</table>

(Continued on next page)
Table 1. (Continued)

<table>
<thead>
<tr>
<th>Study site</th>
<th>N</th>
<th>Or Acronym</th>
<th>Common name</th>
<th>Rate per year (A.I. g/2.54 cm dbh)</th>
<th>Application method and timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glen Ellyn (GE) (2010-2014)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean dbh=41 cm (range=28-48 cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Arena 50WDG</td>
<td>clothianidin</td>
<td>0.94</td>
<td>BSD (one application in mid-June)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Safari 20SG</td>
<td>dinotefuran</td>
<td>0.94</td>
<td>BSD (one application in mid-June)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Safari 20SG</td>
<td>dinotefuran + clothianidin</td>
<td>0.48 + 0.47</td>
<td>BSD (one application in mid-June)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>+ Arena 50WDG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Safari 20SG</td>
<td>dinotefuran</td>
<td>0.94</td>
<td>BSD (one application in mid-July)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Arena 50WDG</td>
<td>clothianidin</td>
<td>0.94</td>
<td>BTS* (one application in mid-June)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Safari 20SG</td>
<td>dinotefuran</td>
<td>0.84</td>
<td>BTS (one application in mid-July)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Safari 2G</td>
<td>dinotefuran</td>
<td>0.84</td>
<td>BBA (one application in mid-June)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean dbh=44 cm (range=38-50) for small trees; Mean dbh=60 cm (range 50-70 cm) for large trees</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>TREE-age (small)</td>
<td>emamectin benzoate (4%)</td>
<td>0.2</td>
<td>T11 Quik-Jet (one mid-May injection)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>TREE-age (small)</td>
<td>emamectin benzoate (4%)</td>
<td>0.4</td>
<td>TI Tree IV (one mid-May injection)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>TREE-age (large)</td>
<td>emamectin benzoate (4%)</td>
<td>0.3</td>
<td>TI Quik-Jet (one mid-May injection)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>TREE-age (large)</td>
<td>emamectin benzoate (4%)</td>
<td>0.6</td>
<td>TI Tree IV (one mid-May injection)</td>
<td></td>
</tr>
</tbody>
</table>

Treatment Code

1BATSC = Bayer Advanced Tree and Shrub Protect and Feed Concentrate II (one mid-May and one mid-June application)
2BATSGF1 = Bayer Advanced Tree and Shrub Protect and Feed Granule II + 2-1-1 fertilizer (one mid-May and one mid-June application)
3BATSC2X = Bayer Advanced Tree and Shrub Protect and Feed Concentrate II (one mid-May application at 2X rate)
4BATSGF2 = Bayer Advanced Tree and Shrub Protect and Feed Granule II + 2-1-1 fertilizer (one mid-May application)
5BATSGF3 = Bayer Advanced Tree and Shrub Protect and Feed Granule II + 2-1-1 fertilizer (1.1% applied as one mid-May application at 0.51 g a.i./cm dbh)
6BATSGF4 = Bayer Advanced Tree and Shrub Protect and Feed Granule II + 2-1-1 fertilizer (1.1% applied as one mid-May application at the 2X rate at 0.58 g a.i./cm dbh)
7BATSCF = Bayer Advanced Tree and Shrub Protect and Feed Concentrate II + 2-1-1 fertilizer (1.47% applied as one mid-May application at 2X rate)
8BSD = Basal soil drench
9BBA = Basal broadcast application
10BTS = Basal trunk spray
11TI = Trunk injection
as a basal soil drench. All three treatments were applied annually in mid-May as a basal soil drench containing Xytec 75WSP (imidacloprid 75%) at either 0.56 gm (1× rate), 0.84 gm (1.5× rate), or 1.12 gm (2× rate) a.i./2.54 cm dbh. Ten single tree replicates were used per treatment rate and an additional ten trees served as untreated controls. Depending on existing soil moisture conditions, the product was diluted in 8–16 L of water and poured around the base of the trunk.

Aurora, Illinois Study (2009–2012): Thirty green ash parkway trees, with a mean dbh of 43 cm (range = 30–66 cm), growing in Aurora, Illinois, were treated with three different treatments with ten single tree replicates per treatment rate. An additional ten trees served as untreated controls. The three treatments included a single basal soil drench application of a homeowner formulation of BATSC2X (imidacloprid 0.74% + clothianidin 0.37%) at the 2× rate in mid-May; two basal soil drench applications of a homeowner formulation of BATSC (imidacloprid 0.74% + clothianidin 0.37%) at the 1× rate made in mid-May and again in mid-June; and two basal broadcast applications of a homeowner formulation of BATSGF1 (imidacloprid 0.76% + clothianidin 0.38% plus a 2-1-1 fertilizer) made in mid-May and again in mid-June. The two BATSC basal soil drench treatments were diluted in 4–12 L of water, depending on existing soil moisture conditions, and applied to the soil around the trunk base. The BATSGF1 basal broadcast application was applied evenly on the soil surface within 1 m of the tree trunk, and watered in with 4 L of water immediately after application.

Homewood, Illinois Study (2009–2012): Fifty green ash parkway trees, with a mean dbh of 41 cm (range of 36–61 cm), growing in Homewood, Illinois, were treated with five different treatments with ten single tree replicates per treatment rate. Ten additional trees served as untreated controls. The five treatments included either one single mid-May or one single mid-September basal soil drench of professional Merit 2F (imidacloprid 25%); one single mid-May basal soil drench of a homeowner formulation of BATSC (imidacloprid 0.76% + clothianidin 0.58%); or one single mid-May basal broadcast application of either a homeowner formulation of BATSC (imidacloprid 1.1% plus a 2-1-1 fertilizer) or BATSGF3 (imidacloprid 0.55% + clothianidin 0.275% plus a 2-1-1 fertilizer). The basal soil drenches of professional Merit 2F and BATSC were applied by diluting the product in approximately 4.0 liters of water and drenching evenly around the base of the trunk. The basal broadcast application treatments were applied evenly in a circle

within 1 m of the tree trunk and immediately watered in with 4 L of water.

Riverside, Hinsdale, Naperville, and Woodridge, Illinois Studies (2012–2015): The Riverside site included 60 large (mean dbh = 61 cm; range = 51–91 cm) green ash trees growing in a park setting, and the Hinsdale site included 60 large parkway green ash trees (mean dbh = 51 cm; range = 46–91 cm). There were ten single tree replicates for each of the five treatment rates, and an additional ten trees served as untreated controls at each site. The Riverside blue ash study site consisted of 36 blue ash parkway trees (mean dbh = 26 cm (range = 19–36 cm) with six single tree replicates for each of the five treatment rates, and an additional six trees served as untreated controls.

The Naperville and Woodridge studies focused on the protection of 25 white ash parkway trees at each site with a mean dbh of 58 cm (range = 51–64 cm) and 37 cm (range = 25–48 cm), respectively. There were five single tree replicates for each of the five treatment rates, and an additional five trees at each site served as untreated controls. The five treatments were applied at the 2× rate at each of the five study sites (i.e. Riverside, Hinsdale, Naperville, and Woodridge), and consisted of an annual mid-May basal soil drench of professional Merit 2F (imidacloprid 25%), a mid-May basal soil drench homeowner formulation of either BATSC (imidacloprid 0.76% + clothianidin 0.58%) or BATSCF (imidacloprid 1.47% plus a 2-1-1 fertilizer), and basal broadcast applications of a homeowner formulation of either BATSGF1 (imidacloprid 0.76% + clothianidin 0.58% + 2-1-1 fertilizer) or BATSGF4 (imidacloprid 1.1% plus a 2-1-1 fertilizer). The basal soil drench applications were applied as previously described by diluting the product in approximately 4 L of water and drenching evenly around the base of the trunk. The basal broadcast applications were applied by distributing the product evenly within 1 m from the base of the tree and watering it in with 4 L of water immediately after application.

Glen Ellyn, Illinois Study (2010–2014): 49 green ash parkway trees, with a mean dbh of 41 cm (range = 28–48 cm), were treated with seven different treatments with seven single tree replicates per treatment or treatment combination rate. An additional seven trees served as untreated controls. Treatments included annual mid-June basal soil drenches of Arena 50WDG (clothianidin 50%) used alone, Safari 20SG (dinitofuran 20%) used alone, and Safari 20SG (dinitofuran 20%) plus Arena 50WDG (clothianidin 50%), and an annual mid-July basal soil drench treatment of Safari 20SG (dinitofu-
furan 20%). The basal soil drenches were mixed with water and applied within 0.5 m around the base of the trunk at a rate of 1 L of drench solution per 2.54 cm dbh. Basal trunk sprays of Arena 50WDG (clothianidin 50%) or Safari 20SG (dinotefuran 20%) were applied annually in mid-June or in mid-July, respectively to the trunk until runoff between the soil line and 1.5 m above the soil line, at a rate of approximately 20 ml/2.54 cm dbh using a Solo hand pump sprayer at 10-20 PSI. The single basal broadcast application of Safari 2G (dinotefuran 2%) was applied annually in mid-June, evenly to the soil, within 1m of the trunk and watered in with 4 L of water.

Fermi Lab Village, Batavia, Illinois Study (2008–2015): This eight-year study included a total of 60 green ash trees growing in residential and park areas of Fermi Lab Village (FLV) on the grounds of the Fermi National Accelerator Laboratory (FNAL) at Batavia, Illinois. The study was designed to evaluate the Quik-jet™ and Tree IV™ trunk injection systems of Tree-age (4% emamectin benzoate) for protection of green ash trees. There were ten single tree replicates for each of the four treatment rates, and an additional ten trees served as untreated controls, for each of the two dbh size classes. In mid-May 2008, 40 green ash study trees were selected for treatment and were divided into two dbh size classes (38 to 50 cm, and greater than 50 cm dbh) for a total of 20 trees in each dbh size class treatment group, and were trunk injected. The trees in the small dbh size class treatment group had a mean dbh of 39 cm (range of 36 to 46 cm) and trees in the larger dbh size class treatment group had a mean dbh of 55 cm (range of 48 to 66 cm). Within the small (38 to 50 cm dbh) size class treatment group, ten single tree replicates received a Quik-jet™ trunk injection of Tree-age (4% emamectin benzoate) at 0.2 g a.i. per 2.54 cm dbh in 5 ml of water per 2.54 cm dbh, and a second group of ten trees received a Tree IV™ trunk injection of 0.4 g a.i./2.54 cm dbh in 10 ml of water per 2.54 cm dbh. For the group of 20 larger trees (greater than over 50 cm dbh), ten single tree replicates were trunk injected with Tree-age (4% emamectin benzoate) at 0.3 g a.i. per 2.54 cm dbh in 7.5 ml of water per 2.54 cm dbh with the QUIK-jet™ trunk injection system, and a second group of ten trees received 0.6 g a.i. per 2.54 cm dbh in 15 ml of water per 2.54 cm dbh using the Tree IV™ trunk injection method. Injection holes were drilled into the tree to a depth of approximately 5.1 cm and a plastic septum (Arborjet #4 plug) was inserted into the trunk at 20–30 cm above the ground. The number of injection sites per tree was determined by taking the dbh and dividing by two. Injection sites were spaced approximately every 15 cm around the trunk circumference. In 2007, an EAB infestation was first detected in green ash trees in the NW corner of the FNAL property. The Fermi Lab Village (FLV) study site was situated approximately 1.2 km east to southeast of the initial EAB infestation so, in mid-May, 2008, ten green ash EAB trap trees were established along a NW to SE transect to monitor for EAB spread and pressure into the FLV study site. At the end of the 2009 and 2010 field seasons, the trap trees and branches from declining portions of untreated non-study FLV trees were felled or removed, peeled, and examined for evidence of EAB galleries and life stages. All 40 of the original study trees were retreated in mid-September 2012 using the same rates, volume of solution, number of injections sites, and application methods. The 2012 re-application treatments were delayed until mid-September, 2012 due to a record-setting regional drought which prevailed from October, 2011 through August, 2012.

Phloem Utilization by EAB Larvae: Assessments of phloem utilization by EAB larvae were conducted during the winter of 2011-2012 at the Aurora, Homewood, and Skokie study sites by taking branch samples from remaining untreated study trees and branches from declining portions of untreated non-study FLV trees. Two untreated trees at the Fermi Lab Village site had to be removed due to hazard and new construction and were also used for branch sampling. At all four sites, branch samples were taken at mid-canopy from each of the four cardinal directions (N, S, E, W) and branches ranged from 5 to 13 cm in diameter and 1.2 to 1.5 m long. Samples were transported back to the Morton Arboretum entomology laboratory and peeled using a draw knife. Following peeling, measurements of EAB larval gallery area per branch, the diameter and circumference of both ends of the branch, length of the branch, the total number of galleries per branch, and the total number of adult EAB exit holes per branch were recorded. EAB gallery area in cm² was determined by measuring the length of the gallery multiplied by the mean width (width at the initiation and at the cessation of the gallery). Total available phloem surface area of each branch was calculated using the formula for the surface area of a cylinder (mean branch circumference × branch length). The total number of EAB galleries and total number of adult exit holes per branch surface area was the quotient of the total number of galleries, and adult exit holes, and the total surface area (cm²) of the branch, respectively. The percent phloem per branch utilized by EAB larvae was the quotient of the total gallery surface area (cm²) and total surface area (cm²) of the branch. All area measurements are expressed in m².
Statistical Analysis. Data was analyzed using SigmaStat statistical software (Jandel Scientific, 1992). Percent canopy loss means and standard errors (SEM) were calculated for each study year for each treatment within a given study site for all remaining trees. The Shapiro-Wilk test was used to test for normality and the Levene Median test for equal variance. For each year of data at each study site, a one-way ANOVA was performed to determine if there were any differences among treatment means. If treatment differences were detected within a given year at a given study site, the means were separated at the \(P = 0.05 \) level using the Dunn’s multiple comparison test. A regression analysis was performed to determine the effect of tree size on the efficacy of an annual \(1 \times \) basal soil drench of imidacloprid for trees at the Homewood and Skokie study sites. A two-way ANOVA was conducted using the professional Merit 2F and all four Bayer Advanced Tree and Shrub (BATS) treatments at the Riverside, Hinsdale, Naperville, and Woodridge study sites to test for the effects of tree size, tree species, and tree size–tree species interaction for percent canopy loss. All percent canopy loss (PCL) ratings were arcsine transformed before analysis to correct for non-normality and heterogeneity of variance (Jandel Scientific 1992). Real mean percentages are presented in the tables.

Results

All study trees at all sites were assessed as healthy (mean PCL < 14%) at the beginning of their respective studies. Overall, EAB pressure, as indicated by changes in percent canopy loss, took from two to four years to reach 50% PCL at the green ash study sites. EAB pressure did not develop on the Naperville and Woodridge study trees with no significant differences in PCL for untreated and treated trees. Final mean percent canopy loss for all untreated trees at the Naperville and Woodridge white ash and Riverside blue ash study sites was 22%, 17%, and 12%, respectively (Table 5).

Skokie Green Ash Study (2007–2011): During the first three years of the study there were no significant differences in PCL for treated and untreated trees. However, by June, 2011, trees treated with Xytect 75WSP at the \(1 \times \) rate of 0.56 g a.i./2.54 cm dbh had a significantly higher PCL of 38% than a PCL of less than 19% for trees treated at the \(1.5 \times \) rate (0.84 g a.i./2.54 cm dbh), and the \(2 \times \) rate (1.12 g a.i./2.54 cm dbh) of Xytect 75WSP (June, \(F = 2.2; \ P = 0.04 \) (Table 2). By the end of the study in August, 2011, trees treated at the \(1.5 \times \) and \(2 \times \) rates of Xytect 75WSP had significantly lower PCL (less than 21%) compared to the untreated controls (42%) (August, \(F = 3.4; \ P < 0.04 \)). The \(1 \times \) rate of Xytect 75WSP provided an intermediate level of protection (PCL = 28%) (Table 2).

Aurora Green Ash Study (2009–2012): Initial percent canopy loss (PCL) ratings and other general observations indicated EAB pressure was low (PCL less than 7%) on all the Aurora study trees, generally taking approximately two years to build to a level where canopy loss was visually apparent. There were no significant differences among treated trees and the untreated controls in the first two years of the study (PCL less than 24%). However, by June, 2011, significant differences were observed between untreated trees and trees treated with a mid-May, followed by a mid-June, basal soil drench of BATSC and a single mid-May BSD of BATSC2X (June, \(F = 2.2; \ P = 0.04 \) (Table 3). By August 2011, all treated trees were significantly healthier (PCL of 15% to 31%) (August, \(F = 2.8; \ P = 0.03 \) compared to untreated trees which were nearly all dead (PCL = 94%) (Table 3). Branch samples taken from untreated trees, during winter, 2011–2012, indicated that EAB pressure at the Aurora site was high and exceeded EAB pressure (i.e. mean number of galleries/m²) for comparable studies by Anulewicz et al. (2008) for heavily infested ash trees suggesting that, in retrospect, the EAB infestation at the Aurora site was probably more developed than originally perceived (Table 8). The percent canopy loss for all treated trees increased by 14% to 16% by June 2012 compared to 2011, possibly in response to the 2012 drought, but then leveled off or decreased by August, 2012 when late summer rains returned. Our findings are consistent with Smitley et al. (2008) who found that PCL increased by approximately 20% following drought periods. All untreated trees were dead (PCL = 100%) by June 2012. By the end of the trial, the mid-May followed by a mid-June basal soil drench of BATSC provided good protection of ash trees (final PCL = 16%). The mid-May followed by a mid-June basal broadcast application of BATSGF1 or a single mid-May basal soil drench application of BATSC2X were not as effective in protecting ash trees (final PCL less than 38%).

Homewood Green Ash Study (2008–2011): Three years into the study (June, 2010), significant differences in PCL appeared between treated and untreated trees (\(F = 3.2; \ P = 0.03 \) (Table 4). All five treatments were highly effective in protecting ash trees from EAB (PCL less than 15%). By 2011, when the study ended, the single mid-May or mid-September basal soil drench
Table 2. Evaluation of three rates of a single mid-May basal soil drench (BSD) of Xytect 75WSP (imidacloprid 75%) for protection of green ash parkway trees at Skokie, Illinois (SK). Each treatment has 10 single tree replicates.

<table>
<thead>
<tr>
<th>TREATMENT</th>
<th>Skokie (SK) green ash parkway trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean dbh = 58 cm (range = 51–89 cm)</td>
<td>One single mid-May basal soil drench (BSD) of imidacloprid 75%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Xytect 75WSP (0.56 g a.i./2.54 cm dbh)</td>
<td>10</td>
<td>13 ± 2.9a</td>
<td>19 ± 2.6a</td>
<td>21 ± 2.8a</td>
<td>29 ± 3.2a</td>
<td>37 ± 2.9a</td>
<td>37 ± 2.9a</td>
<td>38 ± 1.4b</td>
</tr>
<tr>
<td>Xytect 75WSP (0.84 g a.i./2.54 cm dbh)</td>
<td>10</td>
<td>1 ± 0.2a</td>
<td>6 ± 4.4a</td>
<td>10 ± 2.1a</td>
<td>11 ± 2.3a</td>
<td>11 ± 2.3a</td>
<td>11 ± 2.3a</td>
<td>10 ± 1.7a</td>
</tr>
<tr>
<td>Xytect 75WSP (1.12 g a.i./2.54 cm dbh)</td>
<td>10</td>
<td>3 ± 0.4a</td>
<td>7 ± 3.9a</td>
<td>6 ± 4.4a</td>
<td>11 ± 2.3a</td>
<td>17 ± 4.4a</td>
<td>17 ± 4.4a</td>
<td>18 ± 1.6a</td>
</tr>
<tr>
<td>UTC</td>
<td>10</td>
<td>12 ± 2.7a</td>
<td>16 ± 3.7a</td>
<td>18 ± 4.2a</td>
<td>23 ± 3.5a</td>
<td>28 ± 3.7a</td>
<td>26 ± 3.5a</td>
<td>21 ± 13.9a</td>
</tr>
</tbody>
</table>

Significance: NS³ |

¹Means followed by the same letter are not significantly different (Dunn’s test; P<0.05)
²N = number of single tree replicates per treatment rate
³NS = Not significant (P<0.05)
Table 3. Evaluation of a single mid-May basal soil drench (BSD) of BATSC (imidacloprid 0.74% + clothianidin 0.37%), a single mid-May basal broadcast application (BBA) of BATSGF1 ((imidacloprid 0.55% + clothianidin 0.275% plus 2-1-1 fertilizer), and a single mid-May BSD of BATSC (imidacloprid 0.74% + clothianidin 0.37%) at the 2X rate for protection of green ash parkway trees at Aurora, Illinois (AU). Each treatment has 10 single tree replications.

<table>
<thead>
<tr>
<th>TREATMENT</th>
<th>Aurora (AU) green ash trees</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean dbh = 43 cm (range = 30-66 cm)</td>
<td></td>
</tr>
<tr>
<td>BATSC (BSD)</td>
<td>10</td>
<td>6 ± 2.6a</td>
</tr>
<tr>
<td>(two applications in mid-May and early June)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BATSGF1 (BBA)</td>
<td>10</td>
<td>4 ± 1.6a</td>
</tr>
<tr>
<td>(two applications in mid-May and early June)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BATSC2X (BSD)</td>
<td>10</td>
<td>4 ± 1.4a</td>
</tr>
<tr>
<td>(one mid-May application at 2X rate)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UTC</td>
<td>10</td>
<td>6 ± 2.9a</td>
</tr>
</tbody>
</table>

Significance:

- NS²
- P<0.05
- P<0.001

¹Means followed by the same letter are not significantly different (Dunn’s test; P<0.05)

²N = number of single tree replications per treatment rate

³NS = Not significant (P<0.05)
of professional Merit 2F; the single mid-May basal broadcast application of either BATSGF2 or BATSGF3 were significantly more effective in protecting ash trees (PCL less than 13%) compared to untreated trees ($F = 33.5; P = 0.03$). The basal soil drench of BATSC applied annually in mid-May provided intermediate protection (PCL = 25%). 80% of the untreated trees were dead by the end of the study in 2011 (Table 4). In contrast to the Aurora study, good protection of similar size Homewood ash trees was achieved with only a single mid-May basal soil drench or basal broadcast application of imidacloprid alone or in combination with clothianidin. EAB pressure was lower on untreated trees at the Homewood site compared with untreated Aurora trees, and the Homewood study was concluded prior to the onset of the 2012 drought which possibly afforded better protection of the Homewood trees (Table 8). The 25% percent phloem utilization rate for untreated trees at the Homewood site corresponds with low levels of EAB pressure (less than 20%) as defined by Flower et al. (2015).

Riverside Green Ash Study (2012–2015): By the second year of the study (June, 2013), significant differences in PCL appeared between all treated and untreated trees with the exception of those trees treated with a single mid-May basal soil drench of professional Merit 2F (June, $F = 8.7; P < 0.001$; August, $F = 6.2; P < 0.001$) (Table 5). By August, 2013, PCL peaked for all treated trees and reached 57% for untreated trees. During 2014, PCL for all treated trees leveled off and was significantly lower than untreated trees (2014, June, $F = 3.3; P < 0.015$ and 2014, August, $F = 32.9; P < 0.001$) which were all dead (PCL = 100%). This trend continued through the 2015 growing season with PCL for treated trees remaining below 21%, and significantly different from the untreated trees (2015, June, $F = 31.2; P < 0.001$ and 2015, August, $F = 47.8; P < 0.001$) (Table 5). All untreated trees were dead by the end of the study in 2015.

Hinsdale Green Ash Study (2012–2015): Significant differences in PCL were
first observed in August, 2014 between untreated trees ($F = 11.4; P = 0.04$) and trees treated with either a single mid-May basal soil drench of professional Merit 2F, or a single mid-May basal broadcast application of the homeowner formulation of BATSGF1 (Table 5). Annual mid-May basal soil drench treatments of homeowner formulations of BATSC and BATSCF, and a basal broadcast application of the homeowner formulation of BATSGF4, were not as effective in protecting green ash trees. By August, 2015, when the study ended, the percent canopy loss for trees treated with a basal soil drench of professional Merit 2F, or a basal broadcast application of either BATSGF1 or BATSGF4 provided significantly better protection of ash trees compared to the untreated trees. Trees treated with basal soil drenches of BATSC or BATSCF provided intermediate protection of Hinsdale green ash trees. Percent canopy loss for untreated trees approached 60% by the end of the study (Table 5).

Riverside Blue Ash Study (2012–2015): All of the blue ash study trees were in excellent condition at the beginning of the study (PCL less than 12%). EAB pressure failed to build with PCL on untreated control trees less than 15% after four years. There was no significant difference in PCL between treated and untreated blue ash trees (Table 5). The low PCL associated with the untreated Riverside blue ash trees is consistent with findings by Tanis and McCullough (2012) where they found a higher survival rate of blue ash following an EAB infestation. Unprotected green ash trees in the immediate area around the study site were dying or dead from EAB.

Naperville and Woodridge White Ash Studies (2012–2015): All Naperville and Woodridge white ash study trees were very healthy at the beginning of the study in 2012, with PCLs less than 16% and 10%, respectively. EAB pressure failed to build throughout the study period, at both sites, as indicated by PCL of 22% and 17% for all untreated study trees, respectively. There were no significant differences in PCL between treated and untreated trees at either site over the four-year period (Table 5). Unprotected green ash trees in and around both study sites were dying or dead from EAB.

Glen Ellyn Green Ash Study (2010–2014): EAB pressure was slow to build from June, 2010 to June, 2013. Beginning in June and through August, 2013, significant differences in PCL occurred between trees treated with an annual BSD of Arena 50WDG (PCL = 13%) and the untreated controls (June, $F = 2.4; P = 0.04$ and August, $F = 2.3; P = 0.04$) (Table 6). The remaining treated trees had a slightly higher PCL of 15% to 19%. By August, 2014, all treated trees had significantly lower PCL (less than 23%) compared to untreated trees, which were all dead (PCL = 100%) (June, $F = 3.9; P < 0.001$ and August, $F = 8.3; P < 0.001$). Specifically, trees treated with an annual mid-June basal soil drench of Arena 50WDG, Arena 50WDG + Safari 20SG, an annual mid-June basal trunk spray of Arena 50WDG, or an annual mid-June basal broadcast application of Safari 2G, had significantly lower PCL (mean = 13%) compared to trees treated with a mid-June or mid-July basal soil drench of Safari 20SG (mean PCL = 20%) (Table 6).

Fermi Lab Village Green Ash Study (2008–2015): Our EAB trap tree monitoring program, implemented in May, 2008, indicated it took approximately three years for the EAB infestation to spread to the Fermi Lab Village study site, a distance of approximately 1.8 km. These observations are consistent with the rate of natural spread of EAB (Herms and McCullough 2014). PCL from 2008 to 2010 did not exceed 15% for all treated and untreated trees (Table 7). The 2011 field season appeared to be the tipping point, and coincided with when EAB was first detected in trap trees along the western edge of the study site. Beginning with the 2011 field season, treated trees had significantly lower PCL (mean less than 17%) compared to untreated control trees (PCL = 30%) ($F = 2.5; P < 0.02$) (Table 7). From 2012 until the end of the study in 2015, PCL for all treated trees declined and remained below 6%, while PCL for unprotected trees increased to 90% by 2013. All untreated trees were dead by 2015 ($F = 4.6; P < 0.001$; 2013, $F = 51.6; P < 0.001$; 2014, $F = 52.4; P < 0.001$; 2015, $F = 49.2; P < 0.001$) (Table 7). In addition, numerous untreated, non-study trees growing in areas around the FLV site, were also dead.

Role of ash tree size in the efficacy of an imidacloprid basal soil drench. To evaluate the role of tree size, for treatment efficacy of a $1 \times$ rate of an annual mid-May imidacloprid basal soil drench application, treated and untreated green ash trees, at the Skokie and Homewood study sites were grouped separately for a regression analysis because both studies were started in 2007 and 2008, respectively; and the trees were in a similar condition (PCL equal to 7% and 6%, respectively) at the beginning of their respective studies. Regression analysis revealed that tree size had no significant effect on rates of decline for either untreated control trees ($F = 0.01, R^2 = 0.01, P = 0.95$) or trees treated with a $1 \times$ rate of an annual mid-May imidacloprid basal soil drench ($F = 1.71, R^2 = 0.10, P = 0.21$). Both smaller (less than 50 cm dbh) and larger (greater than 50 cm dbh) untreated control trees at the Homewood and Skokie study sites declined to a
Table 5. Evaluation of a single mid-May basal soil drench (BSD) of professional Merit 2F (imidacloprid 25%), or BATSC (imidacloprid 0.74% + clothianidin 0.37%), a single mid-May basal broadcast application (BBA) of BATSGF3 (imidacloprid 0.55% + clothianidin 0.275% plus 2-1-1 fertilizer) or BATSGF4 (imidacloprid 1.1% plus 2-1-1 fertilizer), and a single mid-May BSD of BATSCF (imidacloprid 1.47% plus 2-1-1 fertilizer) all at the 2X rate for protection of green, white, and blue ash park and parkway trees at Riverside (RV), Hinsdale (HI), Naperville (NV), and Woodridge (WR), Illinois. Each treatment has 10 single tree replicates for the Riverside and Hinsdale green ash sites, five single tree replicates each for the Naperville and Woodridge white ash sites, and six single tree replicates for the Riverside blue ash study site.

<table>
<thead>
<tr>
<th>TREATMENT</th>
<th>Mean % canopy loss ratings ± SEM1</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riverside (RV) green ash trees</td>
<td>Mean dbh = 61 cm (range = 51–91 cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merit 2F (BSD)</td>
<td>20 ± 4.0a 24 ± 4.2a 20 ± 2.4ab 40 ± 6.9ab 32 ± 2.1a 13 ± 1.7a 30 ± 13.6a 18 ± 6.0a</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BATSC (BSD)</td>
<td>25 ± 5.7a 25 ± 5.7a 15 ± 2.3a 35 ± 6.9ab 32 ± 2.5a 22 ± 1.7a 20 ± 13.1a 20 ± 5.7a</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BATSGF1 (BBA)</td>
<td>19 ± 4.6a 24 ± 4.2a 14 ± 1.2a 33 ± 4.3ab 33 ± 6.9a 29 ± 7.1a 21 ± 8.4a 15 ± 2.2a</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BATSGF4 (BBA)</td>
<td>20 ± 4.5a 17 ± 3.9a 14 ± 2.5a 26 ± 4.2a 31 ± 7.1a 20 ± 6.8a 10 ± 13.2a 20 ± 7.6a</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BATSCF (BSD)</td>
<td>20 ± 3.8a 19 ± 3.7a 14 ± 2.5a 29 ± 4.4a 26 ± 8.4a 28 ± 8.5a 12 ± 9.7a 19 ± 3.3a</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UTC</td>
<td>13 ± 5.5a 13 ± 5.5a 27 ± 4.6b 57 ± 9.5b 72 ± 4.4b 100 ± 0.0b 100 ± 0.0b 100 ± 0.0b</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significance:</td>
<td>NS2</td>
<td>NS</td>
<td>F=8.7</td>
<td>F=6.2</td>
<td>F=3.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P<0.001</td>
<td>P<0.001</td>
<td>P=0.015</td>
</tr>
</tbody>
</table>

Hinsdale (HI) green ash trees	Mean dbh = 51 cm (range = 46–91 cm)							
Merit 2F (BSD)	13 ± 2.1a 14 ± 2.0a 24 ± 4.0a 34 ± 2.4a 27 ± 5.6a 30 ± 5.8a 29 ± 3.5a 27 ± 3.1a	10						
BATSC (BSD)	12 ± 1.7a 14 ± 1.9a 30 ± 5.7a 31 ± 4.9a 32 ± 7.1a 34 ± 7.8ab 37 ± 3.6ab 37 ± 3.6ab	10						
BATSGF1 (BBA)	14 ± 2.2a 13 ± 2.1a 26 ± 4.6a 28 ± 4.4a 29 ± 7.8a 31 ± 8.6a 27 ± 2.1a 31 ± 1.9a	10						
BATSGF4 (BBA)	22 ± 2.9a 23 ± 2.9a 33 ± 4.6a 38 ± 3.7a 34 ± 4.5a 39 ± 6.8ab 30 ± 3.5a 30 ± 2.7a	10						
BATSCF (BSD)	12 ± 1.7a 16 ± 2.1a 28 ± 3.9a 29 ± 3.9a 37 ± 4.8a 39 ± 5.9ab 39 ± 6.6ab 41 ± 6.9ab	10						
UTC	22 ± 2.9a 25 ± 3.1a 39 ± 10.1a 45 ± 5.5a 43 ± 6.2a 59 ± 7.8b 59 ± 11.9b 59 ± 11.9b	10						
Significance:	NS2	NS	F=11.4	F=3.0	F=3.3	P=0.04	P=0.03	P=0.03

1 Mean % canopy loss ratings ± SEM1
2 Significance: NS = not significant, F = F-statistic, P = probability

August
Riverside (RV) blue ash trees

Mean dbh = 26 cm (range = 19–36 cm)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>N</th>
<th>9 ± 0.7a</th>
<th>6 ± 0.7a</th>
<th>4 ± 0.0a</th>
<th>4 ± 0.0a</th>
<th>3 ± 0.0a</th>
<th>4 ± 0.0a</th>
<th>7 ± 1.4a</th>
<th>7 ± 1.4a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merit 2F (BSD)</td>
<td>6</td>
<td>10 ± 1.1a</td>
<td>8 ± 1.1a</td>
<td>7 ± 1.8a</td>
<td>9 ± 1.9a</td>
<td>3 ± 0.0a</td>
<td>4 ± 1.2a</td>
<td>9 ± 1.5a</td>
<td>9 ± 1.5a</td>
</tr>
<tr>
<td>BATSC (BSD)</td>
<td>6</td>
<td>9 ± 1.1a</td>
<td>5 ± 1.1a</td>
<td>7 ± 1.1a</td>
<td>6 ± 0.7a</td>
<td>3 ± 0.7a</td>
<td>4 ± 0.8a</td>
<td>8 ± 1.45a</td>
<td>8 ± 1.4a</td>
</tr>
<tr>
<td>BATSGF1 (BBA)</td>
<td>6</td>
<td>8 ± 1.0a</td>
<td>2 ± 1.0a</td>
<td>5 ± 1.0a</td>
<td>6 ± 0.7a</td>
<td>2 ± 0.7a</td>
<td>3 ± 0.2a</td>
<td>6 ± 1.2a</td>
<td>6 ± 1.2a</td>
</tr>
<tr>
<td>BATSCF (BSD)</td>
<td>6</td>
<td>9 ± 0.0a</td>
<td>9 ± 0.0a</td>
<td>9 ± 0.7a</td>
<td>10 ± 0.8a</td>
<td>6 ± 0.7a</td>
<td>7 ± 0.8a</td>
<td>8 ± 1.7a</td>
<td>8 ± 1.7a</td>
</tr>
<tr>
<td>UTC</td>
<td>6</td>
<td>11 ± 2.0a</td>
<td>7 ± 1.1a</td>
<td>5 ± 0.7a</td>
<td>6 ± 0.7a</td>
<td>7 ± 1.0a</td>
<td>7 ± 0.8a</td>
<td>12 ± 2.2a</td>
<td>12 ± 2.2a</td>
</tr>
</tbody>
</table>

Significance: NS

Naperville (NV) white ash trees

Mean dbh = 58 cm (range = 51–64 cm)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>N</th>
<th>4 ± 3.0a</th>
<th>4 ± 3.0a</th>
<th>8 ± 2.0a</th>
<th>9 ± 2.1a</th>
<th>17 ± 4.9a</th>
<th>16 ± 3.9a</th>
<th>19 ± 4.3a</th>
<th>19 ± 4.3a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merit 2F (BSD)</td>
<td>5</td>
<td>6 ± 2.6a</td>
<td>7 ± 2.5a</td>
<td>10 ± 3.1a</td>
<td>9 ± 1.5a</td>
<td>8 ± 2.5a</td>
<td>10 ± 0.0a</td>
<td>23 ± 8.0a</td>
<td>23 ± 8.0a</td>
</tr>
<tr>
<td>BATSC (BSD)</td>
<td>5</td>
<td>3 ± 3.1a</td>
<td>3 ± 3.1a</td>
<td>10 ± 3.1a</td>
<td>13 ± 3.6a</td>
<td>5 ± 4.0a</td>
<td>6 ± 3.9a</td>
<td>20 ± 0.0a</td>
<td>20 ± 0.0a</td>
</tr>
<tr>
<td>BATSGF1 (BBA)</td>
<td>5</td>
<td>9 ± 3.3a</td>
<td>9 ± 3.3a</td>
<td>21 ± 4.1a</td>
<td>18 ± 2.8a</td>
<td>10 ± 0.0a</td>
<td>15 ± 0.5a</td>
<td>17 ± 3.3a</td>
<td>17 ± 3.3a</td>
</tr>
<tr>
<td>BATSCF (BSD)</td>
<td>5</td>
<td>9 ± 1.5a</td>
<td>8 ± 1.7a</td>
<td>11 ± 3.3a</td>
<td>15 ± 3.5a</td>
<td>12 ± 5.0a</td>
<td>17 ± 4.2a</td>
<td>28 ± 4.8a</td>
<td>28 ± 4.8a</td>
</tr>
<tr>
<td>UTC</td>
<td>5</td>
<td>15 ± 5.0a</td>
<td>18 ± 5.1a</td>
<td>12 ± 1.7a</td>
<td>15 ± 5.0a</td>
<td>12 ± 2.4a</td>
<td>17 ± 3.6a</td>
<td>22 ± 8.0a</td>
<td>22 ± 8.0a</td>
</tr>
</tbody>
</table>

Significance: NS

Woodridge (WR) white ash trees

Mean dbh = 37 cm (range = 25–48 cm)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>N</th>
<th>6 ± 0.7a</th>
<th>6 ± 0.7a</th>
<th>7 ± 2.0a</th>
<th>9 ± 1.0a</th>
<th>7 ± 2.0a</th>
<th>10 ± 0.0a</th>
<th>15 ± 1.4a</th>
<th>15 ± 1.4a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merit 2F (BSD)</td>
<td>5</td>
<td>9 ± 1.1a</td>
<td>9 ± 1.1a</td>
<td>8 ± 1.9a</td>
<td>8 ± 1.9a</td>
<td>5 ± 0.0a</td>
<td>7 ± 0.8a</td>
<td>14 ± 2.5a</td>
<td>14 ± 2.5a</td>
</tr>
<tr>
<td>BATSC (BSD)</td>
<td>5</td>
<td>9 ± 1.1a</td>
<td>9 ± 1.1a</td>
<td>12 ± 1.7a</td>
<td>6 ± 0.7a</td>
<td>9 ± 1.2a</td>
<td>12 ± 2.6a</td>
<td>11 ± 2.5a</td>
<td>11 ± 2.5a</td>
</tr>
<tr>
<td>BATSGF1 (BBA)</td>
<td>5</td>
<td>8 ± 1.0a</td>
<td>8 ± 1.0a</td>
<td>8 ± 1.9a</td>
<td>6 ± 0.7a</td>
<td>9 ± 1.2a</td>
<td>12 ± 7.2a</td>
<td>12 ± 7.2a</td>
<td>12 ± 7.2a</td>
</tr>
<tr>
<td>BATSCF (BSD)</td>
<td>5</td>
<td>10 ± 0.0a</td>
<td>10 ± 0.0a</td>
<td>6 ± 0.7a</td>
<td>7 ± 0.8a</td>
<td>6 ± 0.7a</td>
<td>7 ± 0.8a</td>
<td>12 ± 1.7a</td>
<td>12 ± 1.7a</td>
</tr>
<tr>
<td>UTC</td>
<td>5</td>
<td>7 ± 2.0a</td>
<td>7 ± 2.0a</td>
<td>6 ± 0.7a</td>
<td>6 ± 0.7a</td>
<td>7 ± 2.0a</td>
<td>7 ± 0.8a</td>
<td>17 ± 2.2a</td>
<td>17 ± 2.2a</td>
</tr>
</tbody>
</table>

Significance: NS

1. Means followed by the same letter are not significantly different (Dunn's test; P<0.05)
2. N = number of single tree replicates per treatment rate
3. NS = Not significant (P>0.05)
Table 6. Evaluation of a single mid-June basal soil drench (BSD) of Arena 50WDG (clothianidin 50%), Safari 20SG (dinotefuran 20%), or Safari 20SG + Arena 50WDG (dinotefuran 20% + clothianidin 50%), a single mid-July BSD of Safari 20SG (dinotefuran 20%), a single mid-June basal trunk spray (BTS) of Arena 50WDG (clothianidin 50%) or Safari 20SG (dinotefuran 20%), and a single mid-June basal broadcast application (BBA) of Safari 2G (dinotefuran 2%) for protection of green ash parkway trees at Glen Ellyn, Illinois (GE). Each treatment has seven single tree replicates.

<table>
<thead>
<tr>
<th>TREATMENT</th>
<th>Glen Ellyn (GE) green ash parkway trees</th>
<th>Mean dbh = 41 cm (range = 28-48 cm)</th>
<th>Mean % Canopy Loss Ratings ± SEM¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arena 50WDG (BSD)</td>
<td>7</td>
<td>4 ± 2.3a</td>
<td>6 ± 1.5a</td>
</tr>
<tr>
<td>Safari 20SG (BSD)</td>
<td>7</td>
<td>5 ± 0.9a</td>
<td>20 ± 4.3a</td>
</tr>
<tr>
<td>(mid-June application)</td>
<td>7</td>
<td>6 ± 1.5a</td>
<td>11 ± 4.6a</td>
</tr>
<tr>
<td>Arena 50WDG (BSD)</td>
<td>7</td>
<td>6 ± 1.4a</td>
<td>6 ± 1.7a</td>
</tr>
<tr>
<td>Safari 20SG (BSD)</td>
<td>7</td>
<td>5 ± 2.2a</td>
<td>7 ± 2.1a</td>
</tr>
<tr>
<td>(mid-July application)</td>
<td>7</td>
<td>4 ± 1.7a</td>
<td>11 ± 4.9a</td>
</tr>
<tr>
<td>Safari 2G (BBA)</td>
<td>7</td>
<td>4 ± 3.8a</td>
<td>14 ± 3.3a</td>
</tr>
<tr>
<td>UTC</td>
<td>7</td>
<td>4 ± 2.4a</td>
<td>11 ± 4.6a</td>
</tr>
<tr>
<td>Significance:</td>
<td>NS³</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

¹Means followed by the same letter are not significantly different (Dunn’s test; P<0.05)

²N = number of single tree replicates per treatment rate

³NS = Not significant (P<0.05)
Table 7. Evaluation of a single mid-May trunk injection (TI) of Tree-age (emamectin benzoate 4%) for protection of green ash park and parkway trees at the Fermi Lab Village (FLV), Fermi National Accelerator Laboratory (FNAL), Batavia, Illinois. Each treatment has 10 single tree replicates.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree-Age Quik-Jet-Small Trees (0.2 g a.i./2.54 cm dbh)</td>
<td>10</td>
<td>7 ± 1.9a</td>
<td>11 ± 3.1a</td>
<td>12 ± 3.1a</td>
<td>15 ± 0.0a</td>
<td>5 ± 0.0a</td>
<td>5 ± 0.0a</td>
<td>5 ± 0.0a</td>
<td></td>
</tr>
<tr>
<td>Tree-Age Tree IV-Small Trees (0.3 g a.i./2.54 cm dbh)</td>
<td>10</td>
<td>12 ± 1.1a</td>
<td>7 ± 0.8a</td>
<td>14 ± 2.9a</td>
<td>16 ± 2.8a</td>
<td>5 ± 0.0a</td>
<td>5 ± 0.0a</td>
<td>5 ± 0.0a</td>
<td></td>
</tr>
<tr>
<td>Tree-Age Quik-Jet-Large Trees (0.4 g a.i./2.54 cm dbh)</td>
<td>10</td>
<td>8 ± 1.8a</td>
<td>14 ± 2.5a</td>
<td>12 ± 2.7a</td>
<td>15 ± 0.0a</td>
<td>5 ± 0.0a</td>
<td>5 ± 0.0a</td>
<td>5 ± 0.0a</td>
<td></td>
</tr>
<tr>
<td>Tree-Age Tree IV-Large Trees (0.6 g a.i./2.54 cm dbh)</td>
<td>10</td>
<td>6 ± 1.8a</td>
<td>14 ± 3.5a</td>
<td>6 ± 1.3a</td>
<td>9 ± 1.9a</td>
<td>5 ± 0.0a</td>
<td>5 ± 0.0a</td>
<td>5 ± 0.0a</td>
<td></td>
</tr>
<tr>
<td>UTC</td>
<td>10</td>
<td>11 ± 5.5a</td>
<td>14 ± 4.1a</td>
<td>11 ± 2.2a</td>
<td>30 ± 0.0b</td>
<td>56 ± 5.7b</td>
<td>90 ± 3.6b</td>
<td>95 ± 3.2b</td>
<td>100 ± 0.0b</td>
</tr>
</tbody>
</table>

Significance:
- NS²
- F=2.5, P<0.02
- F=4.6, P<0.001
- F=51.6, P<0.001
- F=52.4, P<0.001
- F=49.2, P<0.001

¹Means followed by the same letter are not significantly different (Dunn’s test; P<0.05)
²N = number of single tree replicates per treatment rate
³NS = Not significant (P<0.05)
weakened condition and an unacceptable appearance (80% and 42%, respectively). Treated trees, at both sites, remained in excellent to good condition with 9% and 20% percent canopy loss for Homewood and Skokie trees, respectively (Tables 2 and 4).

Role of ash tree size, tree species, and tree size-species interaction on the efficacy of basal soil drenches of imidacloprid applied alone or in combination with clothianidin. A two-way ANOVA procedure was used to examine the role of tree size, species, and their interaction on the efficacy of all trees treated with an annual mid-May 2013 application of professional Merit 2F and Bayer Advanced Tree and Shrub homeowner products (imidacloprid alone, and imidacloprid plus clothianidin) (refer to Table 1) for the smaller white ash (Woodridge), larger white ash (Naperville), larger green ash (Riverside, Hinsdale), and small blue ash (Riverside) trees. The white, green, and blue ash trees from the Woodridge, Riverside, Naperville, and Hinsdale study sites were grouped together because all four studies were initiated in 2012 were of same duration (2012–2015), and all the trees were in good to excellent condition (10 to 20% canopy loss) at the beginning of their respective studies. Results from the two-way ANOVA revealed that ash tree size ($F = 1.2; P = 0.30$), ash tree species ($F = 0.62; P = 0.43$), and, tree size-species interaction ($F = 0.9; P = 0.36$) were not significant for percent canopy loss.

Phloem utilization by EAB larvae at the Aurora, Homewood, and Fermi Lab Village Sites. A summary of phloem utilization by EAB larvae, mean number of total galleries per m2, and mean number of exit holes per m2 for untreated trees at the Aurora and Homewood study sites is presented in Table 8. Percent phloem utilization of remaining untreated Aurora green ash trees, by EAB larvae, was significantly greater ($T = 5.6; P = 0.005$), by over two times, compared with the Homewood site (61% versus 25%). Over four times as many galleries were constructed, per m2 of branch surface area, on untreated trees at the Aurora site (268 versus 64 galleries) compared with untreated Homewood trees ($T = 6.5; P = 0.003$), and over 10 times as many exit holes per m2 of branch surface area were counted on untreated Aurora study trees compared with untreated Homewood trees (179 versus 16 exit holes) ($T = 6.0, P = 0.004$). A regression comparing percent canopy loss with the number of branch galleries and adult EAB exit holes per m2 of branch surface area, revealed a very strong relationship between percent canopy loss and the number of galleries/m2 ($R^2 = 0.90; P < 0.001$) and adult EAB exit holes/m2 ($R^2 = 0.88; P = 0.002$) accounting for 90% and 88% of the variation, respectively suggesting that EAB pressure was much higher at the Aurora site compared with the Homewood site by the end of the 2011 growing season.

Branch samples taken from remaining untreated trees at the Skokie site revealed 7% phloem utilization by EAB larvae, a mean of 24 larval galleries/m2, and a mean of 10 adult exit holes per m2 suggesting that EAB pressure was low and was very similar to the Homewood site.

While only one treated and two untreated study trees were sampled at the Fermi Lab Village site, the differences in percent phloem utilization, mean number of
galleries/m², and mean number of exit holes/m² between treated and untreated trees were very apparent. Branch samples taken from the single tree treated with emamectin benzoate had 0% phloem utilized, no EAB larval galleries, and no adult EAB exit holes. In contrast, the two untreated trees had a mean larval phloem utilization of 50%, 130 galleries/m², and 90 exit holes/m².

Discussion

Neonicotinoid-class insecticides have been shown to be effective when applied as basal soil drenches and/or via soil injections for wood-boring and tunneling insect pests, and these products are available to homeowners as well as professional applicators, in part, due to their systemic action, and having shown effectiveness in protecting ash trees less than 38 cm dbh from EAB (Wang et al. 2005; Smitley et al. 2010 a,b, 2015; McCullough et al. 2011, Herms et al. 2014). However, only a limited number of studies have examined the efficacy of neonicotinoids for protection of ash trees larger than 38 cm dbh, and more specifically ash trees over 50 cm dbh (Smitley et al. 2010a, b, 2015; Bick et al. 2018; McCullough et al. 2019). In an effort to provide homeowners and professional practitioners with options for chemically protecting larger green and white ash trees from EAB, we evaluated various active ingredients and their combinations, at different rates, formulations, application methods, and timing of neonicotinoid-class insecticides, and emamectin benzoate.

The authors recognize that PCL is a relative measure of insecticide efficacy, but in this study the very strong correlation between the number of galleries/m² and percent canopy loss supports the use of PCL as a reliable measure of insecticide efficacy. In addition, Flower et al. (2015) found the ash canopy condition rating system to be a proxy of EAB densities at the tree level, and that the canopy rating system was able to identify trees in the early stages of an EAB infestation with relatively low levels of EAB (less than 20% gallery cover or less than 40 EAB/m²). Further, visual estimates of PCL are used in field studies to evaluate insecticide performance, phytotoxicity, and plant damage caused by wood-boring insect pests of woody plants (Ball and Simmons 1980; Anulewicz et al. 2007, 2008; Smitley et al. 2008, 2010 a,b, 2015; McCullough et al. 2011; Nielsen et al. 2011; Bick et al. 2018; Subburayalu and Syndor 2018).

There are many factors that may affect the efficacy and use of an insecticide for protecting ash trees from EAB, including but not limited to, EAB pressure, timing and method of application, overall tree health, related ash tree insect pests and diseases, soil moisture, and ash tree species composition. Here, we will briefly discuss the potential effects of EAB population pressure, ash species composition, and drought may have on the efficacy of chemical treatments, and the importance of recognizing and adjusting for these factors when formulating and implementing a comprehensive EAB management plan.

Efficacy of imidacloprid applied alone and imidacloprid in combination with clothianidin for the protection of ash trees from EAB

Smaller ash trees (less than 50 cm dbh). Collectively, all commercial and homeowner formulations, rates, and application timing of imidacloprid used alone or in combination with clothianidin provided good to excellent protection (PCL less than 17%) of Aurora and Homewood green ash, Woodridge white ash, and Riverside blue ash parkway trees. Further, there does not appear to be any added benefit to applying imidacloprid combined with clothianidin. Our findings are consistent with previous studies by McCullough et al. (2011), Tanis and McCullough (2012), Smitley et al. (2015), Bick et al. (2018) for trees with a similar dbh, and treated with similar active ingredients, combinations, timing, and rates of application. The lower level of protection of the basal broadcast application of BATSGF1 and basal soil drench of BATSC2X treatments at the Aurora study site is not clear. It is possible that the active ingredient of the granular formulation (i.e. BATSGF1) did not thoroughly leach from the granules, but was not investigated in this study. Another possible explanation could be EAB pressure. The much higher EAB pressure at the Aurora site, compared with the Homewood site, in conjunction with the 2012 drought may be partially responsible for the reduced protection of the basal broadcast application of BATSGF1 and basal soil drench of BATSC2X treatments at the Aurora study site. Additionally, the Homewood study was concluded, prior to the onset of the 2012 drought. These findings illustrate the importance of the role of soil moisture conditions in the uptake and distribution of protective chemicals, and of applying these chemical treatments well in advance of a building EAB infestation while trees are still healthy and before damage is very apparent. Failure to act can result in lack of effective EAB control and extensive loss of tree cover (Herms et al. 2019).

Larger ash trees (greater than 50 cm dbh). Taken together, all commercial and homeowner formulations, rates, application methods, and timing of imidacloprid
used alone or in combination with clothianidin, applied annually at the 2× rate provided good to excellent protection of green and white ash park and parkway trees at the Riverside Hinsdale, Naperville, and Skokie study sites for trees with a mean dbh greater than 50 cm dbh; the only exception being the Hinsdale trees treated in mid-May at the 2× rate with basal soil drenches of BATSC and BATSCF. Interestingly, in this study, tree size (dbh) did not have any significant effect on the rate of decline of Homewood and Skokie untreated trees ($R^2 = 0.01, P = 0.95$) or trees treated ($R^2 = 0.10, P = 0.21$) with an annual 1× basal soil drench of imidacloprid. However, efficacy of the 1× imidacloprid basal soil drench did decrease for the larger treated Skokie trees (final PCL = 28%) probably because of the relationship between tree size (dbh), tree surface area, and phloem biomass (LeGoff and Ottorini 1996, McCullough and Siegert 2007, Smitley et al. 2010b). Our findings are in contrast to a study by Smitley et al. (2010b), where it was found that canopy thinning was dependent on trees size (dbh) ($R^2 = 0.48, P < 0.002$) for trees receiving an annual basal soil drench of imidacloprid at the same rate and timing as in our study, and treated trees over 38 cm dbh declined to a weakened state and undesirable appearance (PCL of 35 to 80%) by the end of their study. In our study, both the smaller Homewood (mean dbh = 41 cm) and larger (mean dbh = 58 cm) Skokie treated trees remained in excellent to good condition, respectively. It is possible that the lower EAB pressure at the Skokie site may have afforded the larger trees the ability to fight off EAB allowing the 1× imidacloprid rate to still provide some level of EAB protection. These findings point to the need and importance of increasing treatment rates for larger trees, and illustrates the effect EAB stress reducing the trees ability to fight off EAB. These findings are consistent with studies by Smitley et al. (2015) which found an increase of 5% to 35% canopy loss following a 2008 spring and summer drought. A similar but delayed percent canopy loss drought response was observed by August, 2013 for similar sized Riverside green ash trees treated with the same products, application methods and timing. Local field observations by the senior author during the 2012 and mid to late 2013 growing seasons revealed common landscape and parkway tree species going into early fall color and leaf scorch along with premature leaf drop all indicating tree stress conditions suggesting that the failure of the basal soil drenches of BATSC and BATSCF, to protect the larger Hinsdale study trees, was probably due more to drought conditions than EAB pressure.

Further, there was also a differential tree recovery response following the 2012 drought between treated trees at both the Hinsdale and Riverside sites. While not investigated in this study, this differential response may be partially due to differences in available soil rooting volume, degree of precipitation runoff and/or infiltration, and related soil moisture levels between the two sites. The Riverside green ash trees were growing in a park setting in the Des Plaines River floodplain with better drained undisturbed soils, in contrast to the Hinsdale trees which were growing in an older residential area with narrow parkways containing typical compacted urban soils with limited soil volume. There was less local precipitation in May, 2012, coming in 11-day period, compared with 2.54 cm more rainfall in June, 2012, but in only four days (Illinois State Water Survey Climate Data, 2012). It is possible that less infiltration and more runoff may have occurred for trees growing in dry crusted soil conditions in the Hinsdale residential parkways compared with Riverside trees growing in a park setting with greater infiltration, less compaction, and less runoff, which may have contributed to greater plant stress reducing the trees ability to fight off the EAB (Larsson 1989, Craul 1999, Herms 2002, Huberty and Denno 2004, Gregory and Dukes 2006, Fahey et al. 2013). Cregg and Dix (2001) found that green ash trees planted in a downtown urban area experienced more drought stress and suffered higher damage from clearwing borers than did trees in a park-like campus. With the return of above-normal precipitation during the 2014 and 2015 growing seasons (Illinois State Water Survey, September 2014 and 2015), treated Riverside ash trees began to recover, but treated Hinsdale trees failed to recover. These aforementioned abiotic factors (i.e. soil conditions, rooting volume, precipitation, and water infiltration) may have affected the uptake and subsequent distribution of the insecticide treatments, resulting in a lower level of protection for the Hinsdale treated trees.

Susceptibility of ash species to EAB. All North American ash species are considered susceptible to EAB, but green ash and black ash (F. nigra) appear to be more highly preferred, followed by white ash
and blue ash (Herms et al. 2019). Previous studies and field observations by the authors and tree care professionals all have indicated that EAB infestations and subsequent green ash tree mortality appears to progress more rapidly compared to white and blue ash (Anulewicz et al. 2007, 2008; Rebek et al. 2008; Tanis and McCullough 2012, 2015; Herms et al. 2014; Herms 2015; Robinette and McCullough 2019; Miller, F. unpublished). Interestingly, over a four-year study period, the PCL of untreated white ash trees at the Naperville, and Woodridge study sites, and untreated Riverside blue ash trees never exceeded 23%, 18%, and 13%, respectively even though adjacent unprotected, non-study green ash trees at all three study sites were dead or dying. However, in our study tree size, species and their interaction did not explain differences in percent canopy loss by treatments at these study sites. These apparent differences in host susceptibility, and the rate and degree of mortality among North American ash species are not clearly understood, and probably include mechanical and chemical host plant characteristics. For example, differences in EAB host susceptibility may be related to differences in host volatiles, nutritional, and defensive compounds (Eyles et al. 2007; Chen and Poland 2009, 2010; Chen et al. 2011, 2012; Martinson et al. 2014; Herms et al. 2015; Poland et al. 2015; Showalter et al. 2018). Additionally, initial and building EAB pressure, combining protective insecticides with ash tree population reduction and sanitation (i.e. “culling the herd” and tree removals) (McCullough and Mercader 2012, Lewis and Turcotte 2015, Rutkowski and Mitz 2017, McCullough et al. 2019) and biological control (Loerch and Cameron 1984, Anulewicz et al. 2008, Dirr 2009, Marshall et al. 2013, Duan et al. 2014, Bauer et al. 2015, Wang et al. 2016, Miller and Gould 2018) may also be contributing factors affecting EAB susceptibility and survival. Regardless of the factor(s) responsible for this differential mortality rate observed between green, white, and blue ash trees, the apparently less susceptible white and blue ash to EAB have the potential to impact EAB management decision-making processes, particularly for communities late to apply protective chemical treatments or with limited tree care budgets. Given a choice, some tree care managers are opting to protect existing white and blue ash trees and their cultivars over green ash trees (Dirr 2009, author’s personal communication with green industry professionals). The more desirable growth habit, urban tolerance, and brilliant fall color of white ash, and drought tolerance and dark green leaves of blue ash are probably important factors in their preference and decision-making (Schlesinger 1990, Griffith 1991, Dirr 2009).

Efficacy of dinotefuran, clothianidin, and dinotefuran combined with clothianidin for protection of ash trees from EAB. In the single Glen Ellyn study, dinotefuran and clothianidin used alone, and in combination, were equally and very effective in protecting ash trees up to 50 cm dbh (PCL ratings less than 18%). There does not appear to be any significant additive effect by combining dinotefuran with clothianidin. These same active ingredients were as effective as imidacloprid used alone or when imidacloprid is combined with clothianidin for protecting similar size ash trees (PCL ratings of 10% to 14%).

Interestingly, the treated Glen Ellyn green ash trees did not show any significant effects from the 2012 drought. It should be noted, however, that the trees at the Glen Ellyn site had been treated for two years prior to the 2012 drought. Further, dinotefuran (Safari) is much more water soluble than imidacloprid and is able to be taken up and distributed faster in the tree compared with imidacloprid, allowing for dinotefuran to quickly target EAB larval feeding particularly when applied later in the growing season (Tattar et al. 1998; USEPA, U.S. Environmental Protection Agency 2004, 2014; Extoxnet Extension Toxicology Network 2010; Bryne et al. 2012, 2014; Nix et al. 2013; Bonmatin et al. 2015; Mach et al. 2018). This provides for greater flexibility for treating trees once an infestation has been identified, even during drought conditions. However, one disadvantage is that dinotefuran has a shorter residual efficacy compared to imidacloprid or emamectin benzoate.

Scheduling of applications within a given growing season is also important. In our studies, the single July basal soil drench of dinotefuran was equally effective in protecting trees as the June application, and is consistent with previous studies by McCullough et al. (2011, 2019) and Smitley et al. (2015). In situations where an EAB infestation is not discovered until later in the growing season (i.e. mid-June to mid-July), and/or if treatments are otherwise delayed, dinotefuran or clothianidin alone, and/or in combination can be an effective option for protecting ash trees up to 50 cm dbh.

Effectiveness of emamectin benzoate for protection of ash trees from EAB. After eight years, it is evident that all rates, application timing, and trunk injection application methods of professional Tree-Age (emamectin benzoate) is highly effective (PCL less than 6%) in protecting green ash trees up to 55 cm dbh, even during a severe drought. Our findings are comparable to
studies conducted by Anulewicz et al. (2007, 2008), Bick et al. (2018), Lewis and Turcotte (2015), McCullough et al. (2011, 2019), and Smitley et al. (2010 a, b). Additionally, in an unrelated ash Naperville–Bolingbrook, Illinois tree preservation study, biennial trunk injection applications of Tree-Age (emamectin benzoate) is currently providing excellent protection of similar size green and white ash trees (Rutkowski and Mitz 2017, Miller and Gould 2018).

In summary, while some ash trees have recovered from as much as 60% canopy loss (Smitley et al. 2007), members of the green industry generally consider up to 30% canopy loss to be acceptable level of damage when evaluating for treatment efficacy and whether to remove and replace a tree (Bick et al. 2018). The vast majority of the treatments evaluated in this study provided good to excellent control (percent canopy loss less than 30%), with the exception of BATSGF1 and BATSC2X at the Aurora site, and BATSCF at the Hinsdale site. Annual applications of imidacloprid applied alone at 0.57 g active ingredient (a.i.)/2.54 cm dbh or greater, clothianidin and dinofururan applied alone at 0.93 g a.i./2.54 cm dbh or greater, imidacloprid + clothianidin at 0.57 g a.i. + 0.28 g a.i./2.54 cm dbh or greater, or dinofururan + clothianidin applied annually at 0.47 g a.i. + 0.46 g a.i./2.54 cm dbh or greater provided good to excellent protection of green, white, and blue ash trees up to 61 cm dbh. Biennial trunk injections of emamectin benzoate applied at 0.2 to 0.6 g a.i./2.54 cm dbh provided good to excellent protection of green ash trees with a mean dbh of 61 cm and, may provide extended protection under moderate to heavy EAB pressure even during a record-setting drought. Tree care practitioners and homeowners have a variety of available options for the timing and application of protective chemicals including basal soil drenches, basal broadcast applications, basal trunk sprays, and soil and trunk injections for protection of their ash tree resource from the EAB. It is important to remember that not all ash tree species are equally susceptible to EAB, and studies are showing, that while still susceptible, decline and death in white and blue ash is slower, and in some cases they may actually survive an EAB infestation (Tanis and McCullough 2012, Robinett and McCullough 2019). Further, professionals and homeowners should recognize the impact that abiotic factors (i.e. drought), and soil rooting volumes may have on the uptake and distribution of protective systemic chemicals, specifically where EAB infestations have been initially confirmed. Diligent inspection of susceptible ash trees, proper selection, timing and application of insecticidal treatments, public awareness and education, and communication among all concerned parties are all critical to implementing an effective EAB management plan for protection of our valuable urban forest resource.

Acknowledgments

The authors would like to express their sincere thanks to E. Zimmerman, Village of Skokie, J. Trousethick and B. Doerr, Village of Homewood, W. Pauley, City of Aurora, M. Collins, Village of Riverside, J. Finnel, Village of Hinsdale, J. Mitz, City of Naperville, B. Santore, Village of Woodridge, P. Drescher, Village of Glen Ellyn, and R. Walton and R. Lootens, Fermi National Accelerator Laboratory, Batavia, Illinois for their assistance and cooperation in allowing us to use their trees for study, and for providing staff and equipment. We would like to sincerely thank J. Doccola and J. Aiken of ArborJet Inc., S. Darnell of Bayer Corporation, S. Bernick of Rainbow Treecare Scientific Advancements, and J. Chamberlain and J. Faussey of Valent Corporation for assisting with applications, and providing funding and material in support of these studies. Thanks are due to N. Dahlberg, S. Kolb, L. Ivaný, D. Kusnierz, and other members of The Morton Arboretum entomology lab for the assistance in applying treatments and tree canopy assessments. A special note of thanks is extended to B. Overbey for her very able assistance with data entry, editing, and formatting of the manuscript.

Literature Cited

Nix K., P. Lamdin, J. Grant, C. Coote, and P. Merten. 2013. Concentration of levels of

Reinstatement of *Andrena vernalis* Mitchell (Hymenoptera: Andrenidae) from Synonymy with *A. ziziae* Robertson

Zachary M. Portman1,*, Ian G. Lane1, Gabriella L. Pardee1, Daniel P. Cariveau1

1 Department of Entomology, University of Minnesota, 1980 Folwell Ave., St. Paul, MN 55108 USA.

* Corresponding author: (e-mail: zportman@umn.edu)

Abstract

Andrena (*Micrandrena*) *ziziae* Robertson, 1891 (Hymenoptera: Andrenidae) is a well-known species found in a variety of habitats in the eastern and central United States and adjacent southern Canada. *Andrena* (*Micrandrena*) *veralis* Mitchell, 1960 was described from five female specimens in the eastern United States and was synonymized with *A. ziziae* by Ribble in 1968. Recently collected specimens from throughout Minnesota have revealed that *A. ziziae sensu* Ribble is actually two species, one of which matches *A. vernalis*. Here, we reinstate *A. vernalis* as a valid species and describe the previously unknown male. We provide diagnostic characters that separate *A. ziziae* and *A. vernalis*, as well as data on the geographic range and floral preferences of both species in Minnesota. *Andrena vernalis* appears to be restricted to high-quality remnant habitats, making it a species of potential conservation concern. These changes will require that previous work on *A. ziziae* be revisited to determine if *A. vernalis* is also present.

Key words: Species complex, specialization, *Zizia*, Apiaceae, taxonomy
novel specimens and a male collected with
the type series. The males of A. vernalis have
clear and consistent differences in the male
terminalia that further cement its status as
a valid species.

Here, we resurrect A. vernalis from
 synonymy and provide additional diagnostic
characters that separate it from A. ziziae. In
addition, we provide the first description of
the previously unknown male. Although A.
veralis appears to occur across the eastern
United States, we focus here on Minnesota,
where it is important to provide a clear
species definition for upcoming ecological
studies. Our data suggest that both A. ziziae
and A. vernalis specialize on Zizia pollen in
Minnesota prairies. However, unlike A. ziz-
iae, A. vernalis appears to be associated with
high-quality remnant habitats, making it
essential to further delineate the range and
habitat requirements of these two species.

Methods & Materials

The following abbreviations are used
for museums and institutions:

INHS Illinois Natural History
Survey, Champaign, IL, USA. Dr. Thomas McEl-
rath.

MCZ Museum of Comparative
Zoology, Harvard University,
Cambridge, MA, USA. Dr. Crystal Maier.

MNDNR Minnesota Department
of Natural Resources, St.
Paul, MN, USA. Dr. Jessi-
ca Petersen.

NCSU North Carolina State Uni-
versity Insect Museum,
Raleigh, NC, USA. Dr. Bob
Blinn.

UMSP University of Minneso-
ta Insect Collection, St.
Paul, MN, USA. Dr. Robin
Thomson.

We examined 850 specimens for this
study. Specimens were largely drawn from
a mix of published (Pennarola 2019) and
unpublished ecological studies of the Minne-
sota bee fauna. The type of A. vernalis was
examined at MCZ and additional non-type
specimens were examined from the type
locality. Unless otherwise noted, specimens
are deposited in the UMSP or the Cariveau
native bee lab collection at the University
of Minnesota and will later be deposited at
UMSP.

Classifications and terminology follow
Michener (2007), except wing vein terminol-
ogy follows Engel (2001). The abbreviations
S1…S8 and T1…T7 are used for sterna and
terga, respectively. The format and termin-
ology of specimen descriptions are modified
and adapted from Mitchell (1960) and Ribble
(1968). Specimen images and measurements
were taken with an Olympus DP27 camera
mounted on an Olympus SZX16 stereomicro-
scope. Images were stacked with CombineZP
software (Hadley 2010). Photographic plates
were compiled using Adobe Photoshop 2018
software (Adobe Systems Inc., San Jose, CA).
Maps were created using ArcMap software
v10.5.1 (ESRI, Redlands, CA).

Pollen analysis. To gain insight into
foraging preferences for A. ziziae and A.
veralis, we used hand nets to collect bees
that were actively foraging on Zizia aptera
and Z. aurea from eight prairies throughout
western MN. We placed all collected bees
into individual 1.5 mL microcentrifuge tubes
and cleaned the net before continuing our
sampling to reduce pollen contamination.
All collected specimens were sacrificed in the
freezer, then swabbed for pollen, and later
identified to species.

In the lab, we sampled the pollen
on each specimen by swabbing the head, tho-
rax, abdomen, and underside of the thorax
with a small piece (~8 mm3) of fuchsian gel
(Kearns and Inouye 1993). Next, we melted
the fuchsin gel onto a microscope slide and
covered it with a cover slip. We then used
a compound microscope to count the first
300 pollen grains encountered on the slide
(Ritchie et al. 2016), recording the number of
Zizia pollen grains and the number of pollen
grains from other genera. We then calculated
the mean number of Zizia pollen grains and
the mean proportion of Zizia pollen grains
bees carried on their body for each species.
We were not able to differentiate between
the pollen of Z. aurea and Z. aptera.

Results

Andrena (Micrandrena) vernalis
Mitchell, new status

Fig. 1A,C,E, 2A,C,E, 3A,C,E, 4A,C,E,
5A–B, 6A–C, 7, 8A,C, 9

Andrena vernalis Mitchell 1960: 168,
♀. Holotype ♀, USA, CT, Colebrook,
31 May 1922, W.M. Wheeler leg. (MCZ 30485).

Andrena ziziae (in part): Ribble, 1968:
267 (syn. A. vernalis with A. ziziae).

Diagnosis. Female A. vernalis can
most easily be separated from A. ziziae by
the broader facial fovea (Fig. 1A–D) and
the more prominent tergal hair bands (Fig.
1E–F). The fovea of A. vernalis take up
nearly the entire distance between the eye
and lateral ocelli (Fig. 1C), whereas the fovea
of A. ziziae take up only slightly more than
half the distance between the eye and lateral ocelli (Fig. 1D). The apical tergal hair bands of *A. vernalis* are longer (Fig. 1E) than the relatively close-cropped hairs of *A. ziziae* (Fig. 1F), though these hairs can be worn off. In addition, tergal rims of *A. vernalis* are distinctly transparent on nearly the entire apical impressed area (Fig. 1E, 2A), whereas *A. ziziae* have the tergal rims are transparent only at the very apex (Fig. 1F).

Other characters that can help separate female *A. vernalis* from *A. ziziae* include the propodeum of *A. vernalis*, which has a slightly more well-defined triangle with the interior of the triangle rugulose (Fig. 2E). In contrast, the triangle of *A. ziziae* is less well-defined and less strongly sculptured (Fig. 2F). In addition, the Rs vein of *A. vernalis* is generally attached to the marginal cell 2–3 vein widths from the stigma (Fig. 3A) whereas the Rs vein of *A. ziziae* is generally attached about 1 vein width from the stigma (Fig. 3B). However, this character is variable and some *A. ziziae* have the Rs vein attached slightly further, about 2 vein widths (Fig. 3D), overlapping with some

Figure 1. *Andrena vernalis* (left column) and *A. ziziae* (right column) female face and abdominal characters: (A) *A. vernalis* face; (B) *A. ziziae* face; (C) *A. vernalis* facial fovea; (D) *A. ziziae* facial fovea; (E) *A. vernalis* abdomen; (F) *A. ziziae* abdomen. Scale bars: A–B, E–F = 1mm; C–D = 500 μm.
A. vernalis that have the Rs vein attached closer to the stigma (Fig. 3C).

Finally, in A. vernalis, the pleura directly anterior to the mid-coxa has a depressed subtriangular area delineated by a weakly carinate but distinct ridge (Fig. 2A,C, 9A–B). In contrast, A. ziziae has the pleura smoothly rounded (Fig. 2B,D), or at most weakly protruding in this area. While this character is diagnostic, it can be extremely difficult to see, especially since it is typically blocked from view by the midlegs.

Females of A. vernalis key out correctly in Mitchell (1960), and they key out to A. ziziae in Ribble (1968) and can be separated by the previously mentioned characters.

Male A. vernalis can be separated from A. ziziae by their broader antennal segments (measured on the anterior side as in Fig. 4B): F3–7 of A. vernalis are distinctly broader than long (Fig. 4A,C), whereas in A. ziziae, F3–7 are longer than broad or have length and width equal (Fig. 4B,D). In addition, the apical lobes of S7 are truncate in A. vernalis (Fig. 5B) and rounded in A. ziziae (Fig. 5D).

Figure 2. Andrena vernalis (left column) and A. ziziae (right column) female thoracic characters: (A) A. vernalis lateral view; (B) A. ziziae lateral view; (C) A. vernalis closeup of pleural depression and ridge, indicated by red arrow; (D) A. ziziae closeup of smoothly rounded pleura; (E) A. vernalis propodeal triangle; (F) A. ziziae propodeal triangle. Scale bars: A–B = 1mm; C–E = 500 μm.
and the dorsal lobes of genitalia are much broader in *A. vernalis* (Fig. 6A) than *A. ziziae* (Fig. 6D).

Additional characters can help separate males of *A. vernalis* and *A. ziziae* but they are subtle and often difficult to discern. Similar to females, male *A. vernalis* have a slightly more well-defined propodeal triangle, the apical rims of the terga are more broadly transparent in *A. vernalis* (Fig. 4E) than *A. ziziae* (Fig. 4F), the Rs wing vein attaches further from the stigma in *A. vernalis* (as in Fig. 3A) than *A. ziziae* (as in Fig. 3B) though this character can be variable, and the pleura directly anterior to the mid-coxa has a depressed subtriangular area delimited by a slightly protruding margin (Fig. 9C–D). Males are difficult to separate from *A. ziziae* and it is recommended that the terminalia be used to confidently identify them.

Males of *A. vernalis* key out to *A. ziziae* in both Mitchell (1960) and Ribble (1968) and can be separated by the previously mentioned characters.

Description of male. Body length: 6.0 mm, range 5.8–6.2 mm; ITD: 1.25 mm (n=7).

Integumental color. Body black without any metallic reflections; clypeus yellow except for two small, sublateral black spots and dark apical rim (Fig. 4A); antennae dark brown above and light brown below (Fig. 4C); wing veins a mix of light and dark brown (Fig. 3E); tibial spurs clearish-white; apical tarsi light brown; basitarsi generally with apex somewhat light brown; apical rims of terga hyaline (Fig. 4E).

Structure. Length and breadth of facial quadrangle about equal; eyes slightly converging below (Fig. 4A); clypeus very slightly convex, projecting slightly below lower margin of eye, shining with faint tessellation, punctures small and obscure, separated by about 2–3 puncture widths, midline of clypeus more sparsely punctate; vertex less than one ocellar diameter; cheeks subequal to eyes in width, rounded posteriorly; malar space linear; F1 subequal to F2+F3; middle flagellomeres broader than long (Fig. 4C); process of labrum very short, about twice as broad as long, broadly truncate and very slightly emarginate medially; mandibles in repose reaching slightly beyond midline of face, with a small but distinct subapical tooth; galea quite short, impunctate, distinctly tessellate and slightly shining.

Pronotal collar without humeral angle; scutum tessellate, only slightly shining, with very obscure punctures separated by 2–4 puncture widths; scutellum tessellate,
only slightly shining, with very sparse and obscure punctures; pleura granular without evident punctures; area on pleura directly anterior to mid coxae with a slightly depressed subtriangular area delimited by a slightly protruding margin (Fig. 9C–D); dorsal area of propodeum rather broad, nearly horizontal, triangle with a slightly impressed outline, finely roughened, subtly but distinctly contrasting with adjacent areas; all basitarsi slender and elongate, considerably narrower than their respective tibiae; r-rs vein relatively long with Rs vein attached to marginal cell 2–3 vein widths from the stigma; 2nd submarginal cell receiving 1m-cu vein at or slightly beyond middle.

Overall shape of metasoma ovoid, reaching greatest width at T3, equal in width to mesosoma (Fig. 4E); terga smooth and tessellate, slightly shining, punctures indistinct; T1 and T2 slightly duller than the apical terga; apical margins of terga slightly but distinctly impressed, taking up about 1/4 of segment on T2 and T3 (Fig. 4E); pygidial plate broadly triangular with a rounded apex.
Description of female. Body length: 7.2 mm, range 7.0–7.4 mm; ITD: 1.40 mm (n = 10).

See Mitchell (1960) for full description.

Floral records. Apiaceae (6 ♂ 108 ♀): Zizia aptera 6 ♂ 86 ♀, Z. aurea 22 ♀. Twenty-six female *A. vernalis* collected in 2018 had their body pollen analyzed. Individuals of *A. vernalis* had on average 287.5 Zizia pollen grains on their bodies and 97% of the pollen carried was from Zizia (Fig. 7).

Phenology. Active in May and June in Minnesota.

Distribution. In Minnesota, *A. vernalis* has a relatively restricted distribution, especially compared to *A. ziziae*. *Andrena vernalis* has only been found in a band in the south-central area of the state (Fig. 8A,C). Although a comprehensive examination of the range of *A. vernalis* was not performed, based on the specimens examined, it extends to the east coast of the US.

Type material examined. Holotype: ♀, Connecticut: Litchfield Co.: Colebrook, 31 May 1922, W.M. Wheeler leg. (MCZ 30485).

Additional material examined. Total specimens: 7 ♂ 114 ♀.

Vestiture. Pubescence entirely whitish; hairs on venter of head rather long, about equal to the length of the cheek+eye; hairs on scutum erect, weakly plumose, not obscuring surface; venter of mesosoma clothed in relatively dense hairs; pubescence on discs of terga relatively short (Fig. 4E); T1 largely lacking discal pubescence; T2 discal hairs with very short and minute, discal hairs moderately longer on more apical terga; apical hair bands weak and generally worn off even in moderately worn specimens; T1 apical hair band limited to a small lateral tuft, T2 apical hair band slightly more extensive but still limited to lateral tufts, T3 apical hair band weak, diffuse, narrowly interrupted medially, T4 apical hair band entire, very weak and diffuse, T5 and T6 lacking apical hair bands (Fig. 4E).

Terminalia. S8 apical portion moderately slender, slightly expanded at tip (Fig. 5A); S7 with apical lobes distinctly truncate, separated by a V-shaped emargination (Fig. 5B); genitalia with dorsal lobes of gonocoxites relatively broad, narrowly separated, slightly diverging apically (Fig. 6A); ventral lobes of gonocoxites narrowed medially, slightly diverging apically (Fig. 6A); genitalia with dorsal lobes of gonocoxites separated by a V-shaped emargination (Fig. 6A); S7 with apical lobes distinctly truncate, slightly slender, slightly expanded at tip (Fig. 6A).

Vestiture. Pubescence entirely whitish; hairs on venter of head rather long, about equal to the length of the cheek+eye; hairs on scutum erect, weakly plumose, not obscuring surface; venter of mesosoma clothed in relatively dense hairs; pubescence on discs of terga relatively short (Fig. 4E); T1 largely lacking discal pubescence; T2 discal hairs with very short and minute, discal hairs moderately longer on more apical terga; apical hair bands weak and generally worn off even in moderately worn specimens; T1 apical hair band limited to a small lateral tuft, T2 apical hair band slightly more extensive but still limited to lateral tufts, T3 apical hair band weak, diffuse, narrowly interrupted medially, T4 apical hair band entire, very weak and diffuse, T5 and T6 lacking apical hair bands (Fig. 4E).

Figure 5. Male S8 and S7: *Andrena vernalis* (A) S8 and (B) S7; *A. ziziae* (C) S8 and (D) S7. Scale bar = 500 μm, all images are at the same scale.
Remarks. Ribble (1968) synonymized *A. vernalis* with *A. ziziae* because he considered *A. vernalis* to merely represent variation within *A. ziziae*. One of the defining characters that Mitchell (1960) used to separate *A. vernalis* was the pleural depression and ridge; Ribble (1968) considered this character too variable, stating:

“Different individuals show a continuous variation in the mesepisternum from the modified type (above) to specimens having a flattened area in front of the coxa. Also, individuals with modified mesepisterna occur throughout most of the range of *ziziae* and are often collected with it. Specimens collected together may be almost identical except for the quite different mesepisterna and intermediates between these two types may occur with them. Males occasionally have weakly depressed areas in front of the middle coxae, but are not unusual in other respects.”

Figure 6: Male genitalia: *Andrena vernalis* (A) dorsal view; (B) ventral view; (C) lateral view; *A. ziziae* (D) dorsal view; (E) ventral view; (F) lateral view. Scale bar = 500 μm, all images are at the same scale.
However, Ribble (1968) followed that with a discussion on the variation in the width of the facial fovea in the female and the shape of the apical lobes of the male S7. Both of those characters are generally consistent within species and are important in delineating species boundaries.

Ribble (1968) did not examine the holotype of *A. vernalis*, though he appears to have examined the two paratypes at NCSU. A note on the location of the paratypes: although the holotype of *A. vernalis* is located at MCZ and Mitchell (1960) indicated that three of the four paratypes were also deposited at MCZ, none of the paratypes were able to be located there. Two of them (from Colebrook, CT) are currently at NCSU and it’s not clear where the third purported MCZ paratype (collected from Pine Island, NY) is located.

Examination of specimens reveals that in addition to the pleural depression and ridge, there are multiple other consistent characters that differentiate *A. vernalis* and *A. ziziae*, including the width of the facial fovea, sculpturing of the propodeum, length of tergal hair bands, length of transparent apical rims, length of the r-rs crossvein, relative length of the antennal segments, and the male terminalia. These characters are discussed in depth in the diagnosis for *A. vernalis*. The pleural ridge is indeed one of the more variable characters, ranging from deep with a strong carina to shallow with a weak carina in *A. vernalis*. The pleural depression and ridge are weaker in the males than the females, though it is consistently present. Some *A. ziziae* females have a weak pleural depression, but it never reaches the level seen in *A. vernalis* and no specimens were found that fully intergrade. Overall the pleural depression and ridge is a consistent character that can distinguish *A. vernalis*, but it is often partially or fully obscured by the midlegs and wings, requiring it to be viewed at a non-ideal angle if it is even visible at all. As a result, in females, the facial fovea is the clearest and most consistent defining character, though the difference is difficult or impossible to see if the foveae are matted.

The species status of *A. vernalis* is most strongly supported by the differences in male terminalia (see diagnosis for details). Six male *A. vernalis* were collected at the same collection events as females and one additional male was found at MCZ that was collected at the same collection event as the holotype but was apparently never seen by Mitchell. The males and females of *A. vernalis* are associated based on the shared pleural depression and ridge, the relatively shorter antennae in both sexes, and the relatively longer clear apical rims of the terga. Plus, the correct association between the male and female in *A. ziziae* is clear, since the lectotype of *A. ziziae* was caught in copula and pinned with the male. In addition, numerous male *A. ziziae* were collected in association with females (including two in copula) at sites where *A. vernalis* was not found. In light of these clear and consistent morphological differences in both males and females, we are reinstating *A. vernalis* as a valid species.
Examination of specimens at MCZ revealed five additional topotypical specimens of *A. vernalis* (4 ♀ and 1 ♂), with two females and the male collected from the same collection event as the type. All the specimens have a prominent pleural depression and ridge (Fig. 9). Indeed, this character seems to be enhanced because the faded integument of these aged specimens provides better contrast. In addition to the pleural depression and ridge, the male and female topotypical specimens and the holotype are a morphological match with the specimens from Minnesota. As a result, we can confidently assign the Minnesota specimens to *A. vernalis* despite the moderate geographic distance between them.

Historically, there has been a fair amount of confusion regarding the identity of the species in Minnesota. The distribution of *Andrena vernalis* and *A. ziziae* in Minnesota is shown in Figure 8, with the relative proportion of each species at each site.
Even Mitchell (1960), despite originally describing *A. vernalis*, may have confused some specimens with *A. ziziae*, since he noted that some specimens of *A. ziziae* had broader facial fovea and more broadly hyaline apical impressed areas of the abdominal terga; both of these characters are suggestive of *A. vernalis*. The terminalia illustrations by Ribble (1968) for *A. ziziae* do not match the current understanding of that species; instead, the illustrations match our current understanding of *A. vernalis*. In contrast, the terminalia illustrations of *A. ziziae* by Mitchell (1960) are consistent with our current understanding of *A. ziziae*. Finally, Ribble (1968) extensively discussed the apparent variation in *A. ziziae*, including variation in the width of the fovea, the shape of the male S7, and pleural ridge.

The *A. ziziae/veralis* complex has sometimes been confused with other species. For example, one female *A. vernalis* was found misidentified as *A. personata* in the MCZ collection (identifier unknown) and a mix of females (6 *A. ziziae* and 1 *A. vernalis*) from Minnesota were all misidentified as *A. (Simandrena) nasonii* Robertson, 1895 by S. Droege.

Andrena (Micrandrena) ziziae Robertson

Fig. 1B,D,F, 2B,D,F, 3B,D,F, 4B,D,F, 5C–D, 6D–F, 7, 8B–C

Andrena ziziae Robertson, 1891: 55, ♂♀ (in part). Lectotype ♂ (designated by Ribble 1968), USA, IL, Carlinville, 7 May 1887, C. Robertson leg., on *Zizia aurea*, INHS #179494; Robertson, 1897: 335 (re-
description, separation from A. personata; Bruner, 1903: 242 (key); Viereck, 1916: 712, 716 (key).

Opandrena ziziae: Robertson, 1902: 193 (new generic assignment, key).

Micrandrena ziziae: Cockerell, 1909: 420 (new generic assignment).

Andrena (Micrandrena) ziziae: Cockerell, 1932: 157–158 (subgeneric assignment, key); Mitchell, 1960: 93, 99, 168–169, Fig. 31, 32 (key, redeposition); Ribble, 1968, 246, 267 (key, redeposition) (in part); Hurd 1979: 1810 (catalogue).

Diagnosis. See diagnosis of A. vernalis in order to separate these two species.

Both females and males key out correctly in Mitchell (1960); since male A. vernalis are not included in Mitchell (1960), see diagnosis of A. vernalis to separate males.

Andrena ziziae males key out to the A. ziziae/piperi Viereck couplet in Ribble (1968) but don’t quite match the A. ziziae couplet since its antennal segments are longer than would be expected by the key. Females key out to the A. ziziae/chlorogaster Viereck couplet in Ribble (1968) but the fovea are slightly narrower than would be expected by the key (taking up slightly more than half the space between the eye and lateral ocelli). Since neither male nor female A. vernalis are included in Ribble (1968), see the diagnosis of A. vernalis to separate from A. ziziae.

Description of male. Body length: 6.0 mm, range 5.5–6.3 mm; ITD: 1.22 mm (n = 10).

See Mitchell (1960) for full description.

Description of female. Body length: 6.9 mm, range 6.5–7.3 mm; ITD: 1.33 mm (n = 10).

See Mitchell (1960) for full description.

Floral records. Apidaeae (58 ♀ 642 ♂): Zizia aptera 5 ♂ 151 ♀, Z. aurea 53 ♂ 491 ♀, Asteraceae: Taraxacum officinale 3 ♂ 6 ♀, Fabaceae: Trifolium repens 1 ♀. Thirty-five female A. ziziae collected in 2018 had their body pollen analyzed. Individuals of A. ziziae had on average 252 Zizia pollen grains on their bodies and 91.95% of the pollen carried was from Zizia (Fig. 7).

Phenology. Active in May and June in Minnesota.

Type material examined. Lectotype ♀, Illinois: Macoupin Co., Carlinville, 7 May 1887, C. Robertson leg., on Z. aurea. Robertson #3819, INHS #179,494 (INHS). 1 Parallectotype, ♂, on same pin as lectotype (INHS).

Remarks. Examination of the lectotype and one of the paralectotypes reveal that _A. ziziae_ matches the traditional definition of that species (i.e. does not match _A. vernalis_). As noted by Ribble (1968), some
male *A. ziziae* have small yellow spots on the paraocular areas. One female was found with 2 submarginal cells on one wing and the normal 3 on the other.

Note that the terminalia illustrations by Mitchell (1960, Fig. 31, 32) are correct, whereas the terminalia illustrations by Ribble (1968, Fig. 26–29) actually match *A. vernalis*. The illustration of S8 by Ribble (1968, Fig. 30) lacks key details and could potentially match either *A. ziziae* or *A. vernalis*.

Discussion

Here, we reinstated *A. vernalis*, which had been previously synonymized with *A. ziziae* by Ribble (1968). Although the taxonomic treatment of a single species in a limited range is not ideal, we believe it is warranted in this case because we are reinstating a synonym rather than describing an entirely new species. In addition, a clear species concept of *A. vernalis* is needed for upcoming pollinator studies on Minnesota prairies where *A. vernalis* features prominently. Finally, the apparently restricted habitat requirements of *A. vernalis* in Minnesota make it a potential species of conservation concern.

It is our hope that the identification resources provided here will allow other researchers to confidently separate *A. vernalis* and *A. ziziae* and flesh out the respective ranges of these two species. The frequent co-occurrence of these two similar species is particularly intriguing. In general, *A. ziziae* was more widely distributed and more abundant than *A. vernalis* across Minnesota, though there was substantial overlap between the two species (Fig. 8). Of the 50 locations in our study where *A. ziziae* was found, *A. vernalis* was also present at 12 of them (Fig. 8C). There was only a single site where *A. vernalis* was found but *A. ziziae* was not, and this was represented by a single specimen. This co-occurrence pattern may hold throughout the range of these two species, since their frequent co-occurrence was a primary reason that Ribble (1968) synonymized *A. vernalis* with *A. ziziae*, and specimens of *A. vernalis* and *A. ziziae* even co-occurred in the type locality of *A. vernalis* (Colebrook, CT).

Sites with *A. vernalis* were located exclusively in central Minnesota, where six sites had greater than seven individuals captured. Of these sites, five of them were considered high quality remnant prairie, while the sixth was an older prairie restoration (> 6 years). These six sites were all topographically complex, containing both wet lowlands and well-drained uplands. The species of *Zizia* differed somewhat between prairie remnants and restorations, with *Zizia aurea* more characteristic of restorations, and *Z. aptera* more characteristic of prairie remnants. In general, *A. vernalis* was much more commonly found on *Z. aptera* than on *Z. aurea*, though it is unclear if this constitutes a floral preference or is a function of *Z. aptera* dominating the high-quality remnants where *A. vernalis* was most commonly found.

Regardless of habitat type, *A. vernalis* and *A. ziziae* were strongly associated with *Zizia*. The vast majority of specimens were collected through hand netting from *Zizia* spp., though a small number were netted from other plant species (n = 10) or were collected through passive traps (n = 5). The goal of one study that provided 480 specimens for this work was to characterize entire bee community floral associations, meaning that netting was performed on all flowering plants in the system throughout the flowering season (Lane et al. 2020, I. Lane, unpublished data). However, despite this whole-community sampling, all *A. vernalis* were caught on *Zizia* and only nine *A. ziziae* were caught on a non-*Zizia* host (*Taraxacum*). In addition, the high fidelity of *A. vernalis* and *A. ziziae* to *Zizia* is supported by the high proportion of *Zizia* pollen found on the bodies of both species (Fig. 7). This suggests that *Zizia* is the primary nectar source as well as pollen source for both bee species. While *Zizia* are by far the dominant spring plants in most of the systems where collection took place for this study, it remains unknown to what extent these two species also use the pollen of other Apiaceae. However, in Minnesota, related species of Apiaceae typically do not share the same habitat or flowering phenology as *Zizia*.

Finally, reinstating *A. vernalis* creates some uncertainty on previous studies that recorded *A. ziziae*. For example, previous studies on the pollination of *Zizia* and *Thaspium* (Lindsey 1984, Lindsey and Bell 1985) may have a more complex system that initially supposed if *A. ziziae* and *A. vernalis* both occur in those systems. In addition, once both species are taken into account, previous work showing that *A. ziziae* is broadly oligolectic on Apiaceae may reveal that one or both of the species have even more specialized floral preferences (Robertson 1926, Ribble 1968, LaBerge 1986, Wood and Roberts 2018). In addition, faunal studies and checklists that recorded *A. ziziae* (e.g. Wolf and Ascher 2008, Smith et al. 2012, Harmon-Threatt and Hendrix 2015, Gibbs et al. 2017) should be revisited in order to determine which species are present.
Acknowledgments

We would like to thank the many people who generously provided specimens and data used in this study: Julia Brokaw (UMN), Bethanne Bruninga-Socolar (UMN), Elaine Evans (UMN), Kiley Friedrich (UMN), Nicole Gerjets (MNDNR), Nora Pennarola (UMN), and Jessica Peterson (MNDNR). This work was funded by the Minnesota Environment and Natural Resources Trust Fund, M.L. 2016, Chp. 186, Sec. 2, Subd. 03a. Specimens collected by MNDNR were also funded by the Minnesota Environment and Natural Resources Trust Fund. We also appreciate the assistance of the curators who provided access to type specimens or data: Crystal Maier (MCZ), Thomas McElrath (INHS), and Bob Blinn (NCSU). We thank Corey Sheffield and one anonymous reviewer for their helpful comments that improved this manuscript. Finally, we would like to thank Mike Arduser for providing feedback on the characters used to separate A. vernalis and A. ziziae.

Literature Cited

Robertson, C. 1895. Notes on bees, with descriptions of new species.—Third paper. Transac-

Robertson, C. 1905. Some new or little-known bees.—V. Canadian Entomologist. 37: 236–237.

Non-native bee species continue to spread globally. Over 83 bee species have established outside of their native ranges worldwide and at least 40 species have established in North America alone (Cane 2003, Russo 2016, Gibbs and Dathe 2017, Martins et al. 2017). Non-native species can have detrimental effects on native ecosystems, yet the consequences of non-native bees are generally unknown, especially for unintentionally introduced species (Goulson 2003, Russo 2016). Some non-native bee species may be well-equipped to navigate harsh, urban landscapes, with a number of non-native species recorded exclusively in urban environments (Russo 2016, Portman et al. 2019). As urbanization increases worldwide, non-native species may be able to exploit urban environments compounding threats to local biodiversity (McKinney 2008, 2006).

Bees in the genus Megachile represent over 1,500 described species in 56 subgenera, accounting for 1/3 of all bees in the family Megachilidae (Michener 2007, Ascher and Pickering 2020). At least thirteen Megachile species are considered non-native across the globe, having expanded outside their native range—the most of any genus of bees (Russo 2016, Portman et al. 2019). There are at least six non-native Megachile species in the continental United States, many of which appear to be expanding rapidly, including Megachile apicalis Spinola (Hymenoptera: Megachilidae). Megachile apicalis is a cavity nesting species native to Europe, North Africa, and the Middle East and was accidently introduced to North America. The first record of M. apicalis in North America is from two specimens from Virginia, one from 1931 and the other from 1883, although the latter specimen is somewhat questionable. Following the first collections, M. apicalis was recorded in California in 1982 (Mitchell 1962, Cooper 1984) and expanded throughout parts of the west (Sheffield et al. 2011b, Droege 2015). Megachile apicalis has since been reported in Pennsylvania in 1996 (Donovall and VanEngelsdorp 2010), Ohio in 2010 (Sivakoff et al. 2018), Michigan in 2013 (Gibbs et al. 2017) and Missouri (date unknown; Camilo et al. 2017). The spread of M. apicalis across North America has been attributed, in part, to being transported in managed Megachile rotundata (Fabricius) pollinator nesting tubes (a close relative, which was accidently introduced in the 1940’s, and is now widely managed as an important alfalfa pollinator; Pitts-Singer and Cane 2011, Droege 2015, Russo 2016).

Here, we report the first records of the non-native leafcutter bee, M. apicalis in Illinois, which were found in a heavily urbanized area within the City of Chicago. We provide detailed information on the urban ecosystem within which they were recorded, describe several ecologically relevant traits for M. apicalis, and discuss the potential effects M. apicalis may have on existing bee communities.

Materials and Methods

Megachile apicalis specimens were collected during the 2018 growing season.
as part of a larger study investigating bee communities along an urbanization gradient in the Chicago Metropolitan Area (Gruver and CaraDonna unpublished). Sampling occurred at eight different sites along an urbanization gradient that followed the Union Pacific North Metra Train Line. We quantified urbanization as the percent impervious surface within a 500 m radius from the sampling location. Across the eight study sites, impervious surface ranged from 69% within the urban core of Chicago to 15% in suburban areas outside of the city. Floral resources were sampled at each site four times from June to August 2018. To quantify the availability of floral resources, we divided each site into eight 25 × 3m sections; within each section, we recorded the identities of flowering species and counted the number of flowering inflorescences of each species. In addition, we recorded the percent cover of all flowering plants, non-flowering vegetation, bare ground, impervious surface, and lawn in each section.

Bees were sampled four times throughout the 2018 season (June–August) at each site using hand nets and pan trapping. *Megachile apicalis* specimens were identified using discover life keys, the Bees of Eastern United States, and the *Megachile* of Canada and Alaska (Mitchell 1962, Sheffield et al. 2011a, Andrus and Droge 2020). Bee specimens from this project are permanently deposited within the Arthropod Collection at the Field Museum (Chicago, IL, USA). Photographs of *M. apicalis* specimens were taken using a Canon EOS rebel T6i camera mounted on a Zeiss stemi 2000c stereomicroscope. Multiple photos were taken of specimens and stacked to create a composite image using Adobe Photoshop 2018 software (Adobe Systems Inc., San Jose, CA).

Results.

During the summer of 2018, we collected 30 *M. apicalis* specimens. All specimens were collected from a single site along the urbanization gradient: the Clybourn Metra Train Station (here after Clybourn), Chicago, Cook County, Illinois (41°55’1.2”N, 87°40’4.”W). Of all eight sites sampled across the urbanization gradient, Clybourn exhibits the greatest surrounding percent impervious surface (69%) and is closest to the city center (5.5 km from downtown Chicago). *Megachile apicalis* specimens were collected during all sampling periods across the summer of 2018 (28 June, 11 July, 27 July, and 10 August). Among the *M. apicalis* specimens collected, 47% (14) were female and 53% (16) male. Most specimens were collected in pan traps 77% (23), and 23% (7) collected while foraging on flowers. We recorded male *M. apicalis* foraging on four flowering plant species, all of which are non-native to North America. Three of these flowering plant species were members of the Fabaceae, *Medicago lupulina, Melilotus albus,* and *Melilotus officinalis,* and one was a member of Asteraceae, *Centaurea stoebe.* We did not record any females foraging on plants—all were caught in bee bowls. The Clybourn site was dominated by non-native plant species (87%) over the growing season, the most of any of the sampled sites in 2018. The non-native flowering plants were also more abundant than native flowering plants, and made up 92.5% of the inflorescences over the course of the season at the Clybourn site.

In addition to *M. apicalis,* we collected several other adventive *Megachile* species across our urbanization gradient: *Megachile rotundata, Megachile sculpturalis* Smith, and *Megachile pusilla* Pérez. Apart from those in the genus *Megachile,* we also recorded the non-native *Pseudoanthidium nanum* (Mocsáry), *Hylea punctatus* (Brulé), *Hylea leptocepalus* (Morawitz), *Hylaenus hyalinatus* Smith, *Chelostoma rapunculi* (Lepeletier), *Anthidium manicatum* (L.), *Anthidium oblongatum* (Illiger), *Andrena wilkella* (Kirby) and *Apis mellifera* L.

Species description. Members of the genus *Megachile* represent a group of robust bees that can be separated from other genera by the combination of the following characteristics: a lack of maculations on the integument, arolia absent, and abdominal tergum 1 (T1) with an anterior face creating a concave appearance (Mitchell 1962). Detailed descriptions of *M. apicalis* are provided in Mitchell (1962) and Sheffield et al. (2011a). Females of *M. apicalis* (Fig. 1) can be identified from other North American *Megachile* by the following combination of distinct characteristics: (i) clypeus with a distinct thick projection medially (Fig. 1C); (ii) abdominal terga 2 and 3 (T2 and T3) with lateral oval impressions that are shallow and impunctate (Fig. 1D); (iii) abdominal sternum 4 (S4) with a few black hairs and sterna 5 and 6 (S5 and S6) with hairs entirely black (Fig. 1E) (Mitchell 1962, Parker 1978, Sheffield et al. 2011a). The average intertergular distance for female *M. apicalis* specimens collected in Chicago was 2.4mm (± 0.18).

Males of *M. apicalis* (Fig. 2) can be more difficult to distinguish. However, male *M. apicalis* can be readily identified by the combination of the following two characteristics: (i) T2 and T3 with lateral oval impressions (Fig. 2C), and (ii) T5 with black upright hairs (Fig. 2D) (Mitchell 1962, Parker 1978, Sheffield et al. 2011a). The average intertergular distance for male *M.
apicalis specimens collected in Chicago was 2.1mm (± 0.19).

Discussion

These first records of *M. apicalis* in Illinois found within the City of Chicago suggest that this non-native bee is fully capable of taking advantage of extreme, urban environments. Across our urbanization gradient, with sites ranging from 15–69% impervious surface, *M. apicalis* was found exclusively at the site exhibiting the most extreme levels of urbanization (Clybourn). We observed *M. apicalis* across all four of our sampling periods from late June until early August, indicating that this bee has a relatively broad flight activity period. We also observed *M. apicalis* foraging only from non-native flowering plant species, which were abundant at this urban sites.

One of the plants on which we observed *M. apicalis* foraging was *Centaurea stoebe* (Asteraceae). *Megachile apicalis* has been shown to have strong preferences for plants in the Cynareae tribe, including *C. stoebe* (Müller and Bansac 2004). Interestingly, *M. apicalis* has also been documented along rail lines in Michigan foraging on *C. stoebe* and it has been suggested that this non-native plant may facilitate the spread of *M. apicalis* (Gibbs et al. 2017). Furthermore, *C. stoebe* was only documented at the Clybourn site, which may partly explain why this was the only site in which *M. apicalis* was observed. The apparent preference of *M. apicalis* for non-native plant species suggests it may be able to flourish in highly disturbed areas with high abundance of non-native floral resources. In addition to the availability of floral resources in highly urban areas, other studies strongly suggest that urban areas likely contain numerous nesting opportunities for cavity nesting bees, including non-native species like *M. apicalis* (Matteson et al. 2008, Fortel et al. 2014).

Megachile apicalis may be well suited to exploit the urban environment given its behavior and ecological traits, potentially impacting other native bee species. Although we do not know the extent of the impact of non-native bee species, there is evidence that non-native species in the genus *Megachile* may compete strongly with native bees for nesting resources. Bees in the subgenus *Eutricharaea* (a non-native subgenus in North America), including *M. apicalis* and *M. rotundata*, create nests in cavities with...
leaf disks that are glued together that act to protect brood from nest parasites and allow them to nest in a variety of cavities (Trostle and Torchio 1994, Frankie et al. 1998). This nesting flexibility and added protection may give them a competitive advantage against other *Megachile* species (Barthell et al. 1998, Frankie et al. 1998). In addition to nesting structure, *M. apicalis* females have been documented displaying aggressive nest usurpation behavior towards other bees, which may increase its ability to acquire and maintain nests (Barthell and Thorp 1995). *Megachile apicalis* has been documented competing with *M. rotundata* for nest sites, but it is not clear the extent to which *M. apicalis* may compete with locally native *Megachile* species that may have different nesting requirements than non-native *Megachile* species (Frankie et al. 1998). Taken together, *M. apicalis* in Chicago has a broad activity period, can take advantage of abundant non-native floral food resources, and has competitive nesting behavior, all of which may facilitate its successful establishment in disturbed urban environments, as well as its continued spread across North America.

Urban centers have been suggested to be refuges for bees (Hall et al. 2017). Although cities can potentially harbor a diversity of bee species, in some cases, cities appear to have larger proportion of non-native bees compared to less disturbed areas (Fetridge et al. 2008, Matteson et al. 2008, Fitch et al. 2019, Wilson and Jamie- son 2019). In addition, some non-native bee species have only been documented in highly disturbed areas, as is the case here with *M. apicalis*, suggesting cities may be a favorable habitat for them (O’Brien et al. 2012, Portman et al. 2019). As urbanization continues to grow worldwide, it is important to monitor the spread of non-native bee species to help us determine the potential impacts they may pose on native bee species.

Acknowledgments

We thank John Ascher for confirming our initial identification of *Megachile apicalis* on BugGuide. Thanks to Maya Dutta,
Literature cited

New State Species Records and Noteworthy Re-captures of Michigan (USA) Trichoptera

David C. Houghton
Department of Biology, Hillsdale College, 33 East College Street, Hillsdale, MI 49242 (e-mail: david.houghton@hillsdale.edu)

Abstract

Ten caddisfly species are reported from Michigan for the first time, including 5 in the family Limnephilidae [Limnephilus femoralis Kirby, L. thorus Ross, Pycnopsyche aglona Ross, P. circularis (Provancher), and P. limbata (McLachlan)], 2 in the Polycentropodidae (Cernotina pallida (Banks) and Holocentropus glacialis Ross), 1 in the Hydroptilidae (Hydroptila fiskei Blickle), 1 in the Leptoceridae (Triaenodes perna Ross), and 1 in the Rhyacophilidae (Rhyacophila angelita Banks). An additional 5 unique species, including several not seen in MI for over 70 years, are confirmed to be extant in the state, most notably Plectrocnemia sabulosa (Leonard & Leonard), MI’s only known endemic caddisfly. The state is now known to contain 305 caddisfly species.

Keywords: Trichoptera, caddisfly, Michigan, species, record

The caddisflies of Michigan are relatively well-known. The most recent statewide checklist (Houghton et al. 2018) documented 295 species, including 41 state species records. These species were compiled from almost 700 collections dating back to the 1930s, and including substantial sampling during the 2010s.

The vast majority of the aforementioned collections have occurred during the summer months. For example, my students and I have sampled several hundred lakes and streams throughout the state since 2010; however, due to inclement weather and the beginning of the academic year, only 6 of these sites have been sampled during the autumn flight period. While the autumn flight period includes far fewer species than the summer flight period, it also features many species unique to it, particularly within the families Limnephilidae and Thremmatidae (Houghton 2018).

Furthermore, MI is a large state that still contains regions with low collecting effort. For example, when I began this study only 20 caddisfly species had been reported from the remote Huron Mountains of the Upper Peninsula (Woods 2015). Thus, the objective of this study was to visit areas and seasons not normally collected, to attempt to find additional species not documented by the recent state checklist.

Materials and Methods

Most of the records noted herein are from sampling in the Huron Mountains. Other records have come from a variety of other collecting sites throughout the state (Fig. 1). In particular, a series of September collections was made at sites in the Huron Mountains and Munising area of the Upper Peninsula, and the Manistee River region of the Lower Peninsula. Dates of these collections ranged 05–30 September 2019. All reported specimens were collected using 8-watt portable ultraviolet light traps. These traps were deployed at dusk and retrieved 1–2 h later. All reported specimens are housed in the Hillsdale College Insect Collection.

Results

A total of 10 new species records for MI are reported herein. In addition, 5 other unique species, some not seen in MI for over 70 years, are confirmed to be extant in the state. Collecting information is included with each species account. The number assigned to each species corresponds to the collecting localities in Fig. 1.

Family Hydropsychidae

1. Arctopsyche ladogensis (Kolenati, 1859). This species has a Holarctic distribution (Cushman 2014). It is known in MI from several collections of larvae in Houghton, Marquette, and Ontonagon Counties, mostly from the 1930s–1940s, and most recently by Yanoviak and McCafferty (1996). The only reported adult collection was from the North Branch of the Otter River in Houghton County in 1949. It is reported herein from...
two adjacent sites of the Salmon Trout River in Marquette County. Only female specimens were collected, which were identified using Givens and Ruiter (2015). Interestingly, specimens were abundant in late June 2019, but absent in July of the same year. The species has not been recorded from any adjacent states or provinces, despite substantial searching in expected habitats of northern MN and WI (Schmude and Hilsenhoff 1986, MacLean 1995, Houghton 2012).

Material Examined. Marquette County: Salmon Trout River, below Middle Rapids, Huron Mountain Club, 46.8100, −87.8245, 26 June 2019, Houghton et al., uv light, 5♀; Salmon Trout River, Lower Dam, Huron Mountain Club, 46.8114, −87.8125, 26 June 2019, 79 ♀.

Family Hydroptilidae

2. *Hydroptila fiskei* Blickle 1963. **NEW STATE RECORD.** This species is reported herein from MI for the first time based on specimens collected from 4 lakes and 1 stream in Marquette County. It has previously been recorded from the eastern US (Rasmussen and Morse 2018), as well as northern MN and southern ON (unpublished data).

Material Examined. Marquette County: Ives Lake, Ives Lake Road, Huron Mountain Club, at Stonehouse, 46.8439, −87.8547, 23 July 2019, Houghton et al., uv light, 3♂; Rush Lake, East side boathouse, Huron Mountain Club, 46.8869, −87.8967, 29 June 2019, Houghton et al., uv light, 2♂; Mountain Lake, boathouse on Mountain Lake Road, Huron Mountain Club, 46.8681, −87.9043, 24 July 2019, Houghton et al., uv light, 2♂; Second Pine Lake, east boathouse, Huron Mountain Club, 46.8705, −87.8567, 19 September 2019, Houghton et al., uv light, 1♂.

Family Leptoceridae

3. *Triaenodes perna* Ross 1938. **NEW STATE RECORD.** This species is known throughout the eastern US and southern Canada, including IL, OH, and ON (Rasmussen and Morse 2018). It is reported herein from MI for the first time based on a single specimen collected from Ives Lake in Marquette County.

Material Examined. Marquette County: Ives Lake, Ives Lake Road, at Stonehouse, Huron Mountain Club, 46.8439, −87.8547, 23 July 2019, Houghton et al., uv light, 1♂.

Family Limnephilidae

4. *Asynarchus rossi* (Leonard and Leonard 1949). This species was first described from specimens collected from the Au Sable River in Crawford County. Leonard and Leonard (1949) also reported specimens from Hunt Creek in Montmorency County. It is reported herein from several collections in Alger and Marquette Counties. These records constitute the first MI collections of the species in over 70 years, as well as the first from the Upper Peninsula. The species is known primarily from the northcentral US, including MN and WI (Rasmussen and Morse 2018). All previous adult collections have occurred during autumn (Karl and Hilsenhoff 1979, Houghton 2012).

Material Examined. Alger County: Wagner Falls of Wagner Creek, MI 94/28, public ac-
cress, 46.3881, −86.6461, 21 September 2019, Houghton et al., uv light, 4♂; Alger Falls, MI 94, 46.3933, −86.6482, 21 September 2019, Houghton et al., uv light, 19♂, 4♀; Marquette County: Salmon Trout River, Lower Dam, Huron Mountain Club, 46.8114, −87.8125, 16 September 2019, Houghton et al., uv light, 5♂.

5. Limnephilus femoralis Kirby 1837. NEW STATE RECORD. This species has a northern Holarctic distribution, and has previously been recorded from ME and WA (Rasmussen and Morse 2018), as well as WI (unpublished data). It is reported herein from MI for the first time based on a single specimen collected from the Salmon Trout River in Marquette County.

Material examined. Marquette County: Salmon Trout River, Middle Falls, Huron Mountain Club, 46.8100, −87.8245, 28 June 2015, Houghton et al., uv light, 1♀.

6. Limnephilus perpusillus Walker 1852. This species is known from MI based on a series of collections from the E.S. George Reserve in Livingston County during the 1940s and maintained in the University of Michigan Museum of Zoology. It is reported herein based on a single specimen from Duck Creek in Oakland County. This record constitutes the first MI collection of the species in over 70 years. The species is known from throughout Canada and the northern US, including MN, OH, ON, and WI (Rasmussen and Morse 2018).

Material examined. Oakland County: Duck Creek, Bird Road, near Ortonville, 42.8125, −83.4706, 06 July 2015, Houghton et al., uv light, 1♂.

7. Limnephilus thorus Ross 1938. NEW STATE RECORD. This species is reported herein from MI collected from Elm Creek in Marquette County. While known primarily from the western US, it has also been reported from MN (Rasmussen and Morse 2018). All collections from MI and MN have occurred during autumn (Houghton 2012).

Material examined. Marquette County: Elm Creek, near Stonehouse at Ives Lake, Huron Mountain Club, 46.8439, −87.8586, 18 September 2019, Houghton et al., uv light, 1♂.

8. Pycnopsyche agrona Ross 1941. NEW STATE RECORD. This species is known from southern Canada and the northeastern US, including MN, OH, ON, and WI (Rasmussen and Morse 2018). It is reported herein from MI for the first time based on collections in Clare and Marquette Counties. All collections occurred in autumn.

Material examined. Clare County: Cranberry Creek, West Wilson Road / Muskegon Road, 44.1326, −84.9474, 05 September 2019, Houghton et al., uv light 23♂, 2♀; Marquette County: River Styx, base of cascade, Huron Mountain Club, 46.8550, −87.8428, 16 September 2019, Houghton et al., uv light, 6♂; River Styx, access bridge off of main road, Huron Mountain Club, 46.8567, −87.8446, 16 September 2019, Houghton et al., uv light, 79♂ 6♀; Third Pine Lake, eastern shore picnic area, Huron Mountain Club, 46.8626, −87.8475, 19 September 2019, Houghton et al., uv light, 7♂; Second Pine Lake, east boathouse, Huron Mountain Club, 46.8705, −87.8567, 19 September 2019, Houghton et al., uv light, 1♂.

9. Pycnopsyche circularis (Provancher 1877). NEW STATE RECORD. This species is known from the eastern US, including OH and WI (Rasmussen and Morse 2018). It is reported herein from MI for the first time based on many collections throughout Marquette County. All collections occurred in autumn.
River, dirt road off of County Road 550 / Big Bay Road, 46.6832, –87.5700, 20 September 2019, Houghton et al., uv light, 5♂; Wilson Creek, Highway 550 / Big Bay Road, 46.7288, –87.6216, 20 September 2019, Houghton et al., uv light, 1♂; Harlow Creek, County Road 550, 46.6327, –87.4753, 20 September 2019, Houghton et al., uv light, 1♂.

10. Pycnopside limbata (McLachlan 1871). NEW STATE RECORD. This species is known from southern Canada and the northeastern US, including MN, ON, and WI (Rasmussen and Morse 2018). It is reported herein from MI for the first time based on several collections in Alger and Marquette Counties. All collections occurred in autumn.

MATERIAL EXAMINED. Alger County: Wagner Falls, Wagner Creek, MI 94/28, public access, 46.3881, –86.6461, 21 September 2019, Houghton et al., uv light, 1♂; Falls, Miners River, 46.4747, –86.5534, 21 September 2019, Houghton et al., uv light, 4♂; Downstream of Miners Falls, near scenic overlook, 46.4748, –86.5314, 21 September 2019, Houghton et al., uv light, 7♂; Alger Falls, MI 94, 46.3933, –86.6482, 21 September 2019, Houghton et al., uv light, 2♂; Marquette County, Salmon Trout River, Lower Dam, Huron Mountain Club, 46.8114, –87.8125, 16 September 2019, Houghton et al., uv light, 1♂; Salmon Trout River, entrance Bridge, Huron Mountain Club, 46.8485, –87.7989, 16 September 2019, Houghton et al., uv light, 4♂; Salmon Trout River, Middle Falls, Huron Mountain Club, 46.8100, –87.8245, 16 September 2019, Houghton et al., uv light, 1♂; South Fork of Elm Creek, off of Ives Lake Road, Huron Mountain Club, 46.8345, –87.8955, 18 September 2019, Houghton et al., uv light, 2♂; Fisher Creek, off of Ives Lake Road, Huron Mountain Club, 46.8555, –87.8819, 18 September 2019, Houghton et al., uv light, 3♂; Ives Lake, Ives Lake Road, at Stonehouse, Huron Mountain Club, 46.8439, –87.8547, 19 September 2019, Houghton et al., uv light, 1♂.

Family Odontoceridae

11. Psilotreta indecisa (Walker, 1852). This species was first reported from MI by Bright and Bidlack (1998) based on a series of adults from the Huron River in Oakland County, and from larval specimens from the Escanaba River in Delta County and the Little Siskiwit River in Keweenaw County. It is reported herein from 2 localities in close proximity to each other of Mountain Stream in Marquette County. Interestingly, specimens were abundant at both sites in late June 2019, but absent in July of the same year. The species is known from throughout Canada and the northern US, including MN, OH, ON, and WI (Rasmussen and Morse 2018).

MATERIAL EXAMINED. Marquette County: Mountain Stream, at Bridge on Mountain Lake Road, Huron Mountain Club, 46.8699, –87.8946, 25 June 2019, Houghton et al., uv light, 49♂; Marquette County: Mountain Stream, below waterfall on Mountain Lake Road, Huron Mountain Club, 46.8692, –87.8933, 25 June 2019, Houghton et al., uv light, 52♂, 2♀.

Family Polycentropodidae

12. Cernotina pallida (Banks 1904). NEW STATE RECORD. This species is known primarily from the eastern coast of the US, but has also been found in OH and ON (Rasmussen and Morse 2018). It is reported herein from MI for the first time based on collections of three lakes in Marquette County.

MATERIAL EXAMINED. Marquette County: Ives Lake, Ives Lake Road, Huron Mountain Club, at Stonehouse, 46.8439, –87.8547, 23 July 2019, Houghton et al., uv light, 6♂; Rush Lake, East Boathouse, Huron Mountain Club, 46.8689, –87.8967, 29 June 2019, Houghton et al., uv light, 31♂; Mountain Lake, Boathouse on Mountain Lake Road, Huron Mountain Club, 46.8681, –87.9043, 24 July 2019, Houghton et al., uv light, 1♂.

13. Holocentropus glacialis Ross 1938. NEW STATE RECORD. This species was erroneously reported from MI by Leonard and Leonard (1949) based on a specimen of Plectrocnemia cincta (Hagen) housed in the Illinois Natural History Survey that was misidentified as H. glacialis (Houghton et al. 2018). It is reported herein from MI for the first time based on two males collected from Duck Creek in Oakland County. It is also known from IL, IN, MN, and WI (Rasmussen and Morse 2018).

MATERIAL EXAMINED. Oakland County: Duck Creek, Bird Road, near Ortonville, 42.8125, –83.4706, 06 July 2015, Houghton et al., uv light, 2♂.

14. Plectrocnemia sabulosa (Leonard and Leonard 1949). This species is MI’s only known endemic caddisfly. It was described from specimens collected from the Au Sable River in Crawford County in 1948, found at several sites along Houghton Creek in Ogemaw County from 1951–1953 (Ellis 1962), and has not been reported anywhere since. It is reported herein from two adjacent sites of the Salmon Trout River in Marquette County. These records constitute the first captures of the species in almost 70 years, as well as the first from the Upper Peninsula. The latter observation
suggests that *P. sabulosa* may also exist in northern WI.

Material Examined. Marquette County: Salmon Trout River, below Middle Rapids Huron Mountain Club, 46.8100, –87.8245, 26 June 2019, Houghton et al., uv light, 8♂; Salmon Trout River, Lower Dam, Huron Mountain Club, 46.8114, –87.8125, 26 June 2019 2♀.

Family Rhyacophilidae

15. *Rhyacophila angelita* Banks 1911. NEW STATE RECORD. This species is found mostly in the western US and Canada, although it has also been reported from MN, NH, and QC (Rasmussen and Morse 2018). It is reported herein from MI for the first time based on a single specimen collected from Wagner Falls in Alger County.

Material Examined. Alger County: Wagner Falls of Wagner Creek, MI 49282, public access, 46.3881, –86.6461, 21 September 2019, Houghton et al., uv light, 1♂.

Discussion

This paper demonstrates the importance of collecting throughout multiple flight seasons. For example, the 3 autumn-flying species of *Pycnopsyche* documented herein for the first time in MI actually appear to be fairly common. *Pycnopsyche circularis*, in particular, was found at the majority of Upper Peninsula sites collected during September 2019. *Pycnopsyche aglona* was found in both the Upper and Lower Peninsulas. Lack of previous documentation of these species was almost certainly due to a lack of collecting during autumn. Similarly, *A. ladogensis* and *P. indecisa* were abundant in June, but absent in July, demonstrating the importance of sampling during the early flight season.

The paper also demonstrates the importance of continued collecting, even in a state as well-documented as MI. Twelve of the 15 species mentioned in this paper were found in the remote and poorly-collected Huron Mountains, among other places. Another 2 species were found exclusively in a neighborhood stream outside of metro Detroit. Since it is difficult to predict which habitats will contain new or unique species, the best approach is to collect from as many habitats as possible.

The state of MI is now known to contain 305 caddisfly species, notably more than the adjacent states of MN (277) and OH (270). While not perfectly equivalent, all 3 states have had an extensive recent collecting effort (Armitage et al. 2011, Houghton 2012). Considering that 67 new state record caddisflies have been documented in MI during the last 10 years (Houghton et al. 2011, DeWalt and South 2015, Houghton 2016, Houghton et al. 2018) additional unknown species probably remain to be discovered.

Acknowledgments

Funding for this study was supported by a grant from the Huron Mountain Wildlife Foundation, a Faculty Summer Leave grant from Hillsdale College, and funds from the Hillsdale College biology department. I thank Erin Flaherty, Ryan Lardner, and Mary Clare Smith for their efforts in collecting many of the specimens reported herein. This is paper #23 of the GH Gordon BioStation Research Series.

Literature Cited

Houghton D.C. 2018. When to sample adult caddisflies: data from a five-year study of a

https://scholar.valpo.edu/tgle/vol53/iss1/1
DOI: 10.22543/0090-0222.2387
Hunting Billbug *Sphenophorus venatus* (Coleoptera: Curculionidae: Dryophthorinae) Adult Feeding Preference and Attraction to Warm- and Cool-Season Turfgrasses

Alexandra G. Duffy1,2,* and Douglas S. Richmond1

1 Purdue University, Department of Entomology, 901 West State Street, West Lafayette, IN 47907
2 Brigham Young University, Department of Biology, 4102 Life Science Building, Provo, UT 84602

*Corresponding author: (e-mail: agduffy4@gmail.com)

Abstract

The hunting billbug *Sphenophorus venatus* Say (Coleoptera: Curculionidae: Dryophthorinae) is a generalist stem-boring pest on warm- and cool-season grasses. The objectives of this work were to (1) investigate adult feeding preference for four common turfgrass host species and (2) explore whether adults are attracted to the volatile odors emitted by these grasses. In laboratory feeding assays, *S. venatus* adults preferred zoysiagrass *Zoysia japonica* Steud. ‘Meyer’ over all other species tested: Bermudagrass *Cynodon dactylon* ‘Patriot’, Kentucky bluegrass *Poa pratensis* ‘Barron’, and creeping bentgrass *Agrostis stolonifera* ‘Penncross’. In y-tube olfactometry assays, only males were attracted to bermudagrass. Our findings suggest that although *S. venatus* odor recognition potentially influences dispersal and host-seeking behavior, it may not ultimately determine feeding preference, where more close-range cues may be important. Further investigations on the mechanisms that cause variation in these behaviors could aid in the pursuit of more sustainable management techniques, such as strategic plant species selection and development of synthetic semiochemical lures for monitoring and trapping.

Keywords: olfactometry, integrated pest management

Beetles in the genus *Sphenophorus* Schönherr, commonly referred to as billbugs, are stem-boring, cosmopolitan pests of small grain crops and grasses (Vaurie 1951). A particularly problematic billbug species in urban environments is the hunting billbug, *Sphenophorus venatus* Say (Coleoptera: Curculionidae: Dryophthorinae), which causes severe injury to warm-season (C-4) grasses, such as zoysiagrass (*Zoysia japonica* Steud. ‘Meyer’) and bermudagrass (*Cynodon dactylon* ‘Patriot’). Kentucky bluegrass (*Poa pratensis* ‘Barron’), and creeping bentgrass (*Agrostis stolonifera* ‘Penncross’). In y-tube olfactometry assays, only males were attracted to bermudagrass. Our findings suggest that although *S. venatus* odor recognition potentially influences dispersal and host-seeking behavior, it may not ultimately determine feeding preference, where more close-range cues may be important. Further investigations on the mechanisms that cause variation in these behaviors could aid in the pursuit of more sustainable management techniques, such as strategic plant species selection and development of synthetic semiochemical lures for monitoring and trapping.

Materials and Methods

Insect and Plant Material. *S. venatus* adults were collected from bermudagrass *C. dactylon* ‘Patriot’ athletic fields in West Lafayette, IN from May to October 2015 using pitfall traps or hand collecting at night. Billbugs were separated by sex (Johnson-Cicalese et al. 1990) and maintained in a growth chamber (25–27 °C; 78–85% RH; 10:14 (L:D)) in plastic deli cups (12 cm diameter) with a moist paper towel and clippings of bermudagrass host-plant looking to reduce chemical inputs and create more sustainable recreational spaces. Adult billbugs chew notches in grass tillers and then females oviposit directly into the tiller (Williamson et al. 2013), thus infestations of the damaging larval stage are driven largely by adult host preferences. Understanding adult feeding behavior could help promote sustainability in urban turfgrass systems by identifying grass species that are less attractive to this pest and that, in turn, require fewer pesticides. We conducted two laboratory studies to 1) investigate the feeding preference of hunting billbug adults for warm- vs. cool-season grasses and 2) explore whether hunting billbug adults are attracted to the odors of different grass species.
material until used in bioassays (12 to 48 hours). Individuals were used only once, and the same individuals were not used in both feeding choice and olfactometry assays. Two cool-season grasses, Kentucky bluegrass (P. pratensis ‘Park’) and creeping bentgrass (A. stolonifera ‘Penncrest’), and two warm-season grasses, bermudagrass (C. dactylon ‘Patriot’) and zoysiagrass (Z. japonica ‘Meyer’), from plots at the Purdue University W.H. Daniel Center for Turfgrass Research and Diagnostics were used for plant material in both assays.

Feeding choice assays. Adult feeding preference was tested using a series of petri-dish bioassays adapted from Richmond (1999) and Johnson-Cicalese and Funk (1990). The bioassays incorporated two cool-season grasses, Kentucky bluegrass (P. pratensis ‘Park’) and creeping bentgrass (A. stolonifera ‘Penncrest’), and two warm-season grasses, bermudagrass (C. dactylon ‘Patriot’) and zoysiagrass (Z. japonica ‘Meyer’). Binary choice treatments included: 1) bermudagrass vs. Kentucky bluegrass, 2) bermudagrass vs. bentgrass, 3) zoysiagrass vs. Kentucky bluegrass, 4) zoysiagrass vs. bentgrass, and 5) bermudagrass vs. zoysiagrass. Treatments encompassed all combinations of warm- vs. cool-season grasses as well as a comparison of the two warm-season grasses. Each treatment was replicated 20 times for males and 20 times for females.

Adult billbugs were placed individually in 5 cm petri dishes lined with moist filter paper and isolated with no food for 24 hours before providing fresh grass tillers. One tiller of each grass species was provided to each billbug and petri dishes were arranged on the bench in a randomized complete block design. Feeding scars were scored as an indicator of preference (Richmond 1999) and were counted using an Olympus IX51 dissecting microscope after 24, 48, and 72 hours. New grass tillers were provided at the beginning of each 24-hour interval. The influence of grass species and insect sex on variation in the mean number of feeding scars were tested for each of the binary-choice treatments using analysis of variance (ANOVA) followed by Tukey’s HSD (Statistica 13, Dell Inc. 2016).

Olfactometry. The behavioral response of S. venatus adults to the odors from four grass species (Kentucky bluegrass, creeping bentgrass, bermudagrass, and zoysiagrass) was tested using a y-tube olfactometer (8 cm and 12 cm arms; 2 cm diameter, round glass joints; Analytical Research Systems, Gainesville, FL), a well-developed and widely used method for quantifying insect responses to plant odors. Odor stimuli were delivered by pushing purified air through an activated charcoal filter and split into two air streams (1 L/min) which were blown through a glass container (14 cm long, 2 cm diameter) that was either empty (purified air control) or contained 5 grams of above-ground plant clippings from one of the four grass species. The odors were then delivered to one of the arms of the olfactometer. Glassware was washed using 1% diluted Alconox soap, rinsed with acetone, and baked in an oven for ~10 minutes at 200 °C between observations. Each odor treatment was compared to a purified air control and fresh odor sources were used for no longer than 30 minutes (McGraw et al. 2011). All observations were made between 9:00 PM and 6:00 AM using a red headlamp. Based on Duffy et al. (2018), a billbug was considered responsive if it walked upwind in the 12-cm base arm and then turned to walk 2 cm into one of the 8-cm arm corresponding with an odor source (treatment or control) and remained within that arm for at least one minute. Billbugs not making a choice between the two odor treatment arms within ten minutes were considered non-responsive (McGraw et al. 2011, Duffy et al. 2018). Each individual billbug was used once, and treatment arms were switched after each replicate to control for directional bias. Treatments were replicated until 20 responsive male and female adults were observed. A Chi-square goodness of fit test was used to test the null hypothesis that S. venatus adults showed no preference for the host-plant odor source vs. purified air control (Statistica 13, Dell Inc. 2016).

Results

Feeding choice assays. For warm- vs. cool-season grass treatments, the interaction between grass species and billbug sex was not significant (F ≤ 1.57; df = 1, 76; P ≥ 0.215). Grass species did not have a significant effect on the mean number of adult feeding scars (McGraw et al. 2011). Each individual billbug was used once, and treatment arms were switched after each replicate to control for directional bias. Treatments were replicated until 20 responsive male and female adults were observed. A Chi-square goodness of fit test was used to test the null hypothesis that S. venatus adults showed no preference for the host-plant odor source vs. purified air control (Statistica 13, Dell Inc. 2016).

Olfactometry. The behavioral response of S. venatus adults to the odors from four grass species (Kentucky bluegrass, creeping bentgrass, bermudagrass, and zoysiagrass) was tested using a y-tube olfactometer (8 cm and 12 cm arms; 2 cm diameter, round glass joints; Analytical Research Systems, Gainesville, FL), a well-developed and widely used method for quantifying insect responses to plant odors. Odor stimuli were delivered by pushing purified air through an activated charcoal filter and split into two air streams (1 L/min) which were blown through a glass container (14 cm long, 2 cm diameter) that was either empty (purified air control) or contained 5 grams of above-ground plant clippings from one of the four grass species. The odors were then delivered to one of the arms of the olfactometer. Glassware was washed using 1% diluted Alconox soap, rinsed with acetone, and baked in an oven for ~10 minutes at 200 °C between observations. Each odor treatment was compared to a purified air control and fresh odor sources were used for no longer than 30 minutes (McGraw et al. 2011). All observations were made between 9:00 PM and 6:00 AM using a red headlamp. Based on Duffy et al. (2018), a billbug was considered responsive if it walked upwind in the 12-cm base arm and then turned to walk 2 cm into one of the 8-cm arm corresponding with an odor source (treatment or control) and remained within that arm for at least one minute. Billbugs not making a choice between the two odor treatment arms within ten minutes were considered non-responsive (McGraw et al. 2011, Duffy et al. 2018). Each individual billbug was used once, and treatment arms were switched after each replicate to control for directional bias. Treatments were replicated until 20 responsive male and female adults were observed. A Chi-square goodness of fit test was used to test the null hypothesis that S. venatus adults showed no preference for the host-plant odor source vs. purified air control (Statistica 13, Dell Inc. 2016).
varied with grass species and billbug sex (grass species × sex interaction, \(F = 16.08; \text{df} = 1, 76; P < 0.001 \)), with males feeding more on zoysiagrass than bermudagrass whereas females exhibited no preference between the two warm-season grass species (Fig. 2).

Olfactometry. Across all treatments, 79.7% (n = 192) of the billbugs tested were responsive and walked upwind in the y-tube olfactometer and made a choice between odor treatments. Adult *S. venatus* males were attracted to bermudagrass in y-tube olfactometry bioassays (\(X^2 = 5.00; \text{df} = 1; P = 0.025 \)), with 75% (n = 20) of males choosing the arm with the odor treatment containing the bermudagrass host-plant material relative to a purified air control. In contrast, females were not attracted to bermudagrass (\(X^2 = 0.80; \text{df} = 1; P = 0.317 \)). Neither males nor females were attracted to the odors from any of the other host species, zoysiagrass (\(X^2 \leq 1.80; \text{df} = 1; P \geq 0.180 \)), Kentucky bluegrass...
The number of hunting billbug, *Sphenophorus venatus* Say, feeding scars on bermudagrass vs. zoysiagrass from males (n = 20) and females (n = 20) in laboratory choice bioassays. Differences were tested with analysis of variance (ANOVA) followed by Tukey’s HSD. Means with the same letter are not significantly different (P > 0.05).

(X^2 ≤ 0.80; df = 1; P ≥ 0.371), or bentgrass (X^2 ≤ 0.80; df = 1; P ≥ 0.371) compared to the purified air control.

Discussion

Information on hunting billbug feeding behavior is limited (Johnson-Cicalese and Funk 1990, Reinert et al. 2011, Huang and Buss 2013). This is the first study to investigate feeding preference of billbugs when provided a choice between different grass species, and the first to survey multiple species of both warm- and cool-season grass types. *Sphenophorus venatus*, displayed a preference for one specific warm-season species, zoysiagrass, feeding more on this species when compared to any of the other grass species examined. This initial study suggests that the other grasses may be less preferred habitats for this species, which may reduce the likelihood of damage and subsequently reduce reliance on synthetic insecticides. However, additional field experiments, such as measuring the feeding and damage rates within monoculture turf stands, should be conducted before drawing definitive conclusions on selecting these grasses as a management strategy. Future work should also include additional warm- and cool-season grass species to the ones tested in this study, as well as multiple host genotypes or cultivars within those species (Reinert et al. 2011, Huang and Buss 2013).

Host-seeking behavior directed by plant odors serves as a more energy efficient strategy for locating preferred hosts than random foraging. The ability for *S. venatus* to orient towards odors was first documented by Duffy et al. (2018), but this study only tested a single grass species, bermudagrass. The present study assessed the attractiveness of four different grass species, Kentucky bluegrass, creeping bentgrass, bermudagrass, and zoysiagrass (*Z. japonica* ‘Meyer’). We observed that male, but not female, hunting billbug adults were attracted to bermudagrass in the y-tube olfactometer. Surprisingly, billbugs were not attracted to any of the other grass species tested, even though zoysiagrass was their preferred host in feeding assays. These results are intriguing, as volatile attraction is known to be influenced by previous host exposure in other beetle species (Austel et al. 2014). The billbugs in this study were collected from a well-established population infesting a bermudagrass monoculture and were only attracted to bermudagrass in the olfactometer. It would be interesting to test for the olfactory responses of individuals from other populations and geographical regions which colonize different grass species and investigate if a pattern of requiring previous exposure to elicit attractiveness would emerge. Future research on intraspecific variation in the attraction to odors and the potential influence of feeding experience could provide insight into the utility of regional or even site specific semiochemical lures for monitoring and management, as well as the ability for these pests to colonize novel host plants. Lack of attraction towards the odors of any grasses by female hunting billbugs could be due to reliance on a putative male-produced pheromone hypothesized by Duffy et al. (2018). It would be interesting to investigate whether the addition of conspecifics alters the attractiveness of grass species in a future study. The observations from this study suggest that a species-specific blend of odors may be unique to bermudagrass and that this odor blend is particularly attractive to this population of *S. venatus* males. In pursuit of more sustainable monitoring and management techniques, such as synthetic semiochemical lures, future efforts should focus on isolating and identifying the specific volatile compounds or blend of compounds that elicited the observed attractiveness.

Our findings from both the feeding preference and olfactometry assays suggest plant selection may be a useful strategy in urban landscape managers’ efforts to create more sustainable urban environments that are less vulnerable to insect pests. Although
it appears male hunting billbugs are attracted to the odor of bermudagrass, they displayed a clear feeding preference for zoysiagrass. However, the cool-season grasses (Kentucky bluegrass and creeping bentgrass) were less preferred in both feeding and olfactometry assays by both males and females. Our findings imply that these grasses may be good candidates for creating urban habitats that are less attractive and less preferred by hunting billbugs. Field studies are still needed to test this hypothesis, but our findings suggest it may be possible to reduce the amount of feeding and resultant damage in urban greenspaces vulnerable to hunting billbug infestation by planting cool-season grasses, such as Kentucky bluegrass and creeping bentgrass.

Acknowledgments

We thank Danielle Craig and Garrett Price for field assistance. We are grateful for the cooperation of superintendents and staff at Purdue Sports Turf and William H. Daniel Turfgrass Research and Diagnostic Center. We are grateful for the cooperation of Dr. Ian Kaplan and Ulianova Vidal Gómez for assistance with the olfactometry methods. Dr. Juli Carrillo, Dr. Laura Ingwell, and Dr. Elizabeth Long provided helpful insights on earlier versions of this manuscript. Dr. Diane Silcox Reynolds provided helpful insight and was integral in developing the initial questions during the A. Duffy’s undergraduate research project. Funding was provided by the United States Golf Association (2015-10-525).

Literature Cited

Karshomyia caulicola (Diptera: Cecidomyiidae) Associated with Sclerotinia-Infected Soybean in the United States and Canada

Robert L. Koch1,*, Bruce D. Potter2, Joseph Moisan-De Serres3, Janet J. Knodel4, Veronica Calles-Torrez4, John Gavloski5, Theresa Cira1, Mads Bartz1, Raymond J. Gagné6

1 Department of Entomology, University of Minnesota, 1980 Folwell Avenue, Saint Paul, MN 55108
2 Southwest Research and Outreach Center, University of Minnesota Extension, Lamberton, MN 56152
3 Laboratoire d’Expertise et de Diagnostic en Phytoprotection, Ministère de l’Agriculture, des Pêcheries et de l’Alimentation du Québec, QC, Canada
4 Extension Entomology, Department of Plant Pathology, North Dakota State University, Walster Hall, Fargo, ND 58102
5 Manitoba Agriculture, Box 1149, 65-3rd Avenue NE, Carman, MB, Canada
6 Systematic Entomology Laboratory, Agricultural Research Service, U.S. Department of Agriculture, c/o Smithsonian Institution MRC-168, P.O. Box 37012, Washington, DC 20013-7012, USA

* Corresponding author: (e-mail: koch0125@umn.edu)

Abstract

The white-mold gall midge, Karshomyia caulicola (Coquillett), (Diptera: Cecidomyiidae) was documented in association with soybean, Glycine max (L.) Merr., infected with the fungus Sclerotinia sclerotiorum (Lib.) de Bary. This mycetophagous cecidomyiid appears widespread in the northern soybean producing region, with confirmed detections from Minnesota, North Dakota (U.S.) and Québec (Canada). Though likely not a pest of soybean plants, the presence of K. caulicola in soybean fields may complicate identification, population assessment and decision making for soybean gall midge, Resseliella maxima Gagné, which is a recently described pest of soybean. Here, we provide an overview of the known biology and distribution of K. caulicola and descriptions to aid in distinguishing these two cecidomyiids.

Keywords: White mold, Sclerotinia stem rot, Cecidomyiidae, gall midge

This article documents the association of the white-mold gall midge, Karshomyia caulicola (Coquillett) (Diptera: Cecidomyiidae), with soybean, Glycine max (L.) Merr. (Fabales: Fabaceae), and other plants infected with the fungus Sclerotinia sclerotiorum (Lib.) de Bary (Helotiales: Sclerotiniaceae). This fungus causes the plant disease Sclerotinia stem rot (white mold), with infected plants exhibiting growth of white, cottony mycelia and sclerotia on and in above-ground tissues (Link and Johnson 2007). Of particular concern is that immature stages of K. caulicola on Sclerotinia-infected soybean plants or in soil of soybean fields could be confused for immatures of the recently described soybean gall midge, Resseliella maxima Gagné (Diptera: Cecidomyiidae) (Gagné et al. 2019). Resseliella maxima is an emerging pest of soybean in the Midwest Region of the U.S. (Gagné et al. 2019). Resseliella maxima infests the stems of soybean plants generally near the soil surface, where the larvae feed mainly on the phloem, but may eventually move to the xylem and pith (Gagné et al. 2019, Koch and Potter 2019).

During surveys to determine the geographic distribution of R. maxima and other scouting in soybean, larvae with a superficially similar appearance to R. maxima were found on or in Sclerotinia-infected tissues of soybean plants. Cecidomyiid adults were reared under ambient laboratory conditions from larvae in Sclerotinia-infected soybean stems collected in Val-Saint-François Municipality, Québec (Canada) (29 August 2018) and Ramsey County, Minnesota (U.S.) (2 August 2019). In addition, two cecidomyiid adults were collected in an emergence trap placed over the soil in a field in Stearns County, Minnesota (U.S.) (8 July 2019). In 2018, this field had a significant infestation of cecidomyiid larvae associated with Sclerotinia-infected soybean stems. Additional cecidomyiid larvae were collected from Sclerotinia-infected soybean stems Redwood (17 September 2019), Renville (16 September 2019) and Stearns (11 September 2019) counties in Minnesota, and in Barnes (17 September 2019), Cass (17 September 2019), LaMoure (17 September 2019), Richland (17, 20 and 29 September 2019) and Sargent (17 September 2019) counties in North Dakota.
The above-mentioned cecidomyiid adults and larvae from Québec, Minnesota and North Dakota were determined to be *K. caulicola* by R. J. Gagné. Voucher specimens are deposited in the National Museum of Natural History (USNM), Smithsonian Institution, Washington, DC (U.S.).

Larvae matching the description of *K. caulicola* were reported (but not brought to the laboratory for identification) from *Sclerotinia*-infected tissues of soybean plants in 2018 in McLeod, Sibley, Stearns, Olmsted, Ottertail and Wadena counties in Minnesota (Potter unpublished data). In 2019, more larvae were reported from *Sclerotinia*-infected tissues of soybean plants in Benton, Brown, Chippewa, Dakota, Douglas, Goodhue, Kandiyohi, Meeker, Morrison, Nicollet, Ottertail, Pope, Redwood, Ramsey, Sherburne, Stearns, Stevens, Wadena, Waseca and Wright counties in Minnesota (Potter and Koch unpublished data), and from *Sclerotinia*-infected pepper, *Capsicum annuum* L. (Solanales: Solanaceae), in Val-Saint-François Municipality, Québec (Moisan-De Serres personal observation). Previously, observations were made of similar larvae in association with *Sclerotinia*-infected tissues of soybean, dry beans, *Phaseolus vulgaris* L. (Fabales: Fabaceae), and canola, *Brassica napus* L. (Brassicales: Brassicaceae), in Manitoba (Canada) in 2014 and 2016 (Gavloski and Bajracharya 2016, Gavloski unpublished data), and in association with *Sclerotinia*-infected soybean and sunflower, *Helianthus annuus* L. (Asterales: Asteraceae), in Minnesota dating back at least 25 years (Potter personal observation).

These larvae associated with *Sclerotinia*-infected tissues displayed a distinctly different biology than those of typical *R. maxima* infestations (Gagné et al. 2019, Koch and Potter 2019). Infestations of *K. caulicola* were seen later in the season (after soybean flowering and the onset of *Sclerotinia* stem rot), whereas *R. maxima* infestations are typically found as early as the third trifoliate stage growth stage of soybean. *Karshomyia caulicola* larvae were found inside and outside of *Sclerotinia*-infected soybean stems, pods and other tissues (Fig. 1), whereas *R. maxima* larvae are typically found under the epidermis of the stem at the base of soybean plants. *Karshomyia caulicola* infestations were encountered throughout soybean fields wherever *Sclerotinia*-infected stems are present, whereas *R. maxima* infestations have typically been most abundant near field edges that are adjacent to fields that had soybean the previous year.

In the field, late instar larvae of *K. caulicola* displayed a generally less intense orange coloration (Fig. 1) than similarly sized larvae of *R. maxima* (Gagné et al. 2019). Under close examination, larvae of these two species can be distinguished. The larval integument of *K. caulicola* is generally smooth with minor sculpturing (Fig. 2a). The terminal abdominal segment of *K. caulicola* ends in two blunt lobes, one on each side, and each with four inconspicuous apical setae (Fig. 2a, b). The spatula of *K. caulicola* is deeply incised anteriorly and

Figure 1: Larvae of *Karshomyia caulicola* associated with *Sclerotinia*-infected soybean: larvae on mycelia on exterior of soybean pods [a], larvae inside a *Sclerotinia*-infected stem [b], and larvae inside a *Sclerotinia*-infected pod [c]. Image by T. Cira & R. Aita [a], J. Moisan-De Serres [b] and B.D. Potter [c].

https://scholar.valpo.edu/tgle/vol53/iss1/1
DOI: 10.22543/0090-0222.2387
the lobes rounded (Fig. 2c). In contrast, the larva of *R. maxima* has a uniformly pebbled integument, and its terminal segment is more tapered and ends in a conspicuous pair of conical projections (Fig. 2d, e). The spatula of *R. maxima* is only weakly incised apically (Fig. 2f).

Adults of the two species are strikingly different. Adults of *K. caulicola* have uniformly grayish antennae, wings and legs, and the abdominal tergites and sternites are very definitely subdivided horizontally (Fig. 3). In contrast, adults of *R. maxima* have striped antennae and legs, mottled wings, and the abdominal tergites and sternites are uniformly sclerotized (Gagné et al. 2019). The male sexual apparatus of both are distinct also; that of *K. caulicola* was illustrated in Gagné (1973) and that of *R. maxima* in Gagné et al. (2019). A key to genera of adult Cecidomyiinae of North America is available (Gagné 2018) to identify other possible gall midges that might be encountered in work on soybean.

The genus *Karshomyia*, which is comprised of 51 species worldwide, is in the tribe Karshomyiini in the subfamily Cecidomyiinae (Gagné and Jaschhof 2017). *Karshomyia caulicola* has also been referred to as: *Diplosis caulicola* Coquillett, *Hiastatus concinnus* Marikovskij, and *Karschomyia concinna* (Marikovskij) (Pakalniškis et al. 2000, Gagné and Jaschhof 2017). *Karshomyia caulicola* has a Holarctic distribution. It is widespread in Europe, with reports from the United Kingdom (Harris 2004), Netherlands (Nijveldt 1985), Germany (Meyer 1984), Russia (Marikovskij 1956), Latvia (Spungis 2003), Lithuania (Pakalniškis et al. 2000) and Ukraine (Gagné and Jaschhof 2017). In Germany, *K. caulicola* is reported as univoltine with adult flight activity occurring over a period of five months (Meyer 1984). In North America, *K. caulicola* was previously reported from only the U.S. state of New Hampshire (Coquillett 1895). The detections reported above, expand considerably the known North American range of *K. caulicola*.

Karshomyia caulicola is reported as being mycetophagous (Meyer 1984), which explains the observed association with *Sclerotinia*-stem rot of plants. In Europe, larvae of this species have been reported from *Sclerotinia*-infected “stems of beans and potatoes and in the stems and pods of

Figure 2: Distinguishing characters of *Karshomyia caulicola* larva (dorsal [a] and ventral [b] views of larval eighth and terminal abdominal segments and spatula [c]) and *Resseliella maxima* larva (dorsal [d] and ventral [e] views of larval eighth and terminal abdominal segments and spatula [f]). Drawings by R.J. Gagné.
winter rape” and to feed on the mycelia of such fungi (Nijveldt 1985). Similarly, the detections reported here of K. caulicola in North America were also associated with Sclerotinia-infected stems and reproductive tissues of plants. Therefore, we suspect this species is not a plant pest. However, the report of K. caulicola larvae from stems of Icelandic poppy, Papaver nudicaule L. (Ranunculales: Papaveraceae), in New Hampshire (Coquillett 1895) and “oil poppy” in the United Kingdom (Harris 2004) had no mention of Sclerotinia-stem rot or other fungal infection of the plants.

Here, we provided the first documentation of K. caulicola associated with Sclerotinia-infected soybean and other plants in North America, which corroborates reports of its biology from Europe. The geographic extent of the reports presented here and a report from Pierce County, Wisconsin (U.S.) (Hamilton 2019) confirm that K. caulicola is widespread. Furthermore, knowledge of the presence of this cecidomyiid in soybean refines our understanding of the geographic distribution of R. maxima, which was previously confused with K. caulicola in some earlier distribution maps. The detection of adult K. caulicola in emergence cages placed in a field in 2019 that had numerous orange-colored cecidomyiid larvae in association with Sclerotinia-infected soybean in 2018, suggests K. caulicola likely overwinters in the soil or plant debris in the field. Additionally, we clarify the morphological differences between K. caulicola and R. maxima to facilitate identification of these species for efforts to understand the biology of both these species in soybean fields. The presence of both cecidomyiid species in soybean may complicate identification, population assessment and decision making for the plant pest, R. maxima.

Acknowledgments

Some of the survey efforts that resulted in detections of Karshomyia caulicola were partially supported by the North Central Soybean Research Program, the Minnesota Soybean Research and Promotion Council, and the North Dakota Soybean Council.

Literature Cited

Figure 3: Adult of Karshomyia caulicola. Image by J. Moisan-De Serres.

First Record of the Hairy Maggot Blow Fly, Chrysomya rufifacies (Diptera: Calliphoridae) in Indiana

Kristi Bugajski*, PhD and Raenah Bailey
1610 Campus Drive East, Valparaiso University. Valparaiso, IN 46383.
* Corresponding author: (e-mail: Kristi.Bugajski@valpo.edu).

Abstract

The hairy maggot blow fly, *Chrysomya rufifacies* (Macquart 1844; Diptera: Calliphoridae) is native to Australia but has spread worldwide and has become established in the United States. This paper presents the first documentation of the species in Indiana, specifically in Valparaiso, Indiana. The species was found in September 2017 and again in October 2019. Its presence is variable in Northwest Indiana, but it seems to be found in the fall when the temperatures are at least 30°C prior to collection.

Key Words: Hairy maggot, *Chrysomya rufifacies*, Indiana

The hairy maggot blow fly, *Chrysomya rufifacies* (Macquart 1844) is native to Australia but has spread worldwide (Baumgartner 1993). It was first introduced to the Western Hemisphere in Costa Rica in 1978 (Baumgartner and Greenberg 1984). Since then, it has spread into North America and has been documented in: Arizona (Baumgartner 1986), Arkansas (Meek et al. 1998), California (Greenberg 1988), Colorado (DeJong and Chadwick 1997), Florida (Mertins 1991), Illinois (Shahid et al. 2000), Louisiana (Martin et al. 1996), Michigan (Shahid et al. 2000), Nebraska (Figarola and Skoda 1998), New Mexico (Shahid et al. 2000), Oklahoma (Ahadizadeh et al. 2014), Ontario (Rosati and VanLaerhoven 2007), Tennessee (Shahid et al. 2000), Texas (Richard and Aherns 1993), West Virginia (Joy and D’Avanzo 2007) and Wisconsin (Marche 2013). Theoretical distributions of *C. rufifacies* include Indiana (Whitworth 2006, Rosati and VanLaerhoven 2007, Jones et al. 2019), but were not actually documented. Only one other *Chrysomya* species is known in Indiana: Picard (2013) documented one female adult *Chrysomya megacephala* (Fabricius 1794), on chicken liver. This was the first record of a species of *Chrysomya* in the state, being collected in Indianapolis, Indiana, approximately 240 km south of Valparaiso, Indiana. The authors corresponded with Purdue Entomological Research Collection (PERC) personnel to ensure that there are no *C. rufifacies* voucher specimens from the state, and there are none. This paper presents the first documented *C. rufifacies* in Indiana.

The field site where the collections occurred is located on Valparaiso University’s campus in Valparaiso, Indiana (approximate coordinates, 41° 27’ 37.9” N, 87° 03’ 03.3” W). It has been used for decomposition studies using pigs as a carrion model, consistently in the summer and fall months since 2012. It is located in the clearing of a shady, wooded area in a remote part of campus. Research is conducted inside a metal dog kennel measuring 6.1 m × 36.1 m × 31.8 m to prevent predation.

Third instar larvae of *C. rufifacies* were collected on 26 September 2017. During the time of year, it was unseasonably warm, with temperatures reaching up to 37 °C and with average humidity ranging from 60–78%, and there was no precipitation during the period of corpse exposure. Other larval species of Calliphoridae collected in the same trial include *Lucilia coeruleiviridis* Macquart (1855), *Lucilia sericata* (Meigen 1826), *Phormia regina* (Meigen 1826), *Calliphora vicina* Robineau-Desvoidy (1830), and *Calliphora vomitoria* (Linneaus 1758).

Identifications were made in the laboratory by Kristi Bugajski using Sukontason et al. (2008). The most distinguishing feature of *C. rufifacies* is a “hairy” appearance from distinct, elongated tubercles (Sukontason et al. 2008) (Fig. 1–2). This feature will help differentiate between *C. rufifacies* and *C. megacephala*. In addition to the tubercles, *C. rufifacies* has an incomplete and heavily pigmented peritreme with the middle slit being slightly bent (Sukontason et al. 2008). Adults of the two congeners can be separated using Whitworth’s (2006) key.

The species was collected for a second time on 5 October 2019. Third instar larvae...
were found on one of six pigs that were placed in the field on 1 October 2019. At the start of the trial, temperatures were above average, reaching 31.5 °C on the day of placement, which is consistent with when the species was previously found. Despite higher temperatures of up to 34 °C in September 2018, no specimens were found. They were also not found in 2019 prior to October.

The timing of the first collections of *Chrysomya* species, as reported in the literature, looks consistent in the Midwestern states and Canada. *Chrysomya rufifacies* were collected in Wisconsin on 2–3 October 2012 by Marche (2013). Rosati and VanLaerhoven (2007) found *C. rufifacies* in Windsor, Ontario on 7 October 2004. Likewise, Picard (2013) found the congener *C. megacephala* in Indiana on 24 September 2012.

One of the concerns about the non-native *C. rufifacies* is that it will outcompete native calliphorids, in particular *Cochliomyia macellaria* (Fabricius 1775) (Baumgartner 1993). However, if the current trend of only seeing *C. rufifacies* in the fall months continues, this will not have a large impact on the species composition in northwestern Indiana because *C. macellaria* is a warm-weather species that is not typically found in the fall. In eight years of research, *C. macellaria* has

Figure 1. Three third instar *Chrysomya rufifacies* collected from Valparaiso, Indiana on 26 September 2017.

Figure 2. Close up of the posterior end of a third instar *Chrysomya rufifacies* collected from Valparaiso, Indiana on 26 September 2017.
never been found in the fall months at this field site.

Chrysomya are warm-weather species, and it is probable that these distribution records are from migrating populations that are established in the southern states (Rosati and VanLaerhoven 2007). Rosati and VanLaerhoven (2007) provided maps with a projected range for *C. rufifacies* based on climate change trends that included most of the United States. This paper confirms their predictions that the species would be found in Indiana. This paper documents the first confirmation of *C. rufifacies* in the state, specifically Northwest Indiana. The authors suspect that it is present in other parts of the state if the conditions are adequate.

Acknowledgments

The authors wish to thank the biology department at Valparaiso University, Birky Family Farms, Dr. Jeffrey Holland, and the PERC and the members of Team Maggot who helped with the research (Shelby Leucata, Monique LeDonne, and Lauren Smith).

Literature Cited

Phytochemicals embedded in the leaf cuticle or within leaf tissues are known to play significant roles in plant host selection by Lepidoptera (Thompson and Pellmyr 1991, Renwick and Chew 1994). Host selection can be based on the presence of unique phytochemistry (Haribal et al. 1996), the concentration of select phytochemicals (Pereyra and Bowers 1988), or the relative proportions of different compounds within the tissue (Nishida et al. 1987). Host specific cues can positively influence behavior as seen by Meagher et al. (2011) where Spodoptera frugiperda (J. E. Smith) (Noctuidae) preferentially selected grass when given a choice between corn, forage grass, and an artificial surface. Ultimately, the process of host selection for oviposition is relatively complex, potentially integrating multiple signals, to result in a behavioral choice (Lund et al. 2019).

With the establishment of invasive plant species into local ecosystems, opportunities exist to explore the impact of novel phytochemicals from these plants (Capuccino and Arnason 2006) on oviposition. Ailanthus altissima (Mill.) Swingle (Simaroubaceae), the tree of heaven, is a highly invasive tree species (Mastelić and Jerković 2002) containing phytochemicals with a range of biological activities (Alves et al. 2014). Methylene chloride extracts from A. altissima leaves inhibited germination and growth of alfalfa, Medicago sativa L. (Fabaceae), and showed weak insecticidal properties against Aedes aegypti L. (Culicidae) (Tsao et al. 2002), while Pavela et al. (2014) demonstrated antifeedant activity in Spodoptera littoralis (Boisduval) associated with A. altissima methanol extracts. The potential use of novel phytochemicals from invasive plants, like A. altissima, to deter oviposition prior to host selection represents an exciting application for economically valuable crops.

One of the most widespread and damaging insect pests to cash crops is the fall armyworm, S. frugiperda, which feeds primarily on plants in the grass family (Nagoshi et al. 2012) with its most severe impact on corn, Zea mays L. (Poaceae) (Cruz et al. 1999). To reduce the damage caused by the fall armyworm and other crop pests, the United States spends over $10 billion annually on synthetic pesticides that, when applied, cause an increase in acute poisoning; cancer, and chronic diseases in humans; contaminated food products; destruction of...
beneficial predators; pesticide resistance; honey bee poisoning; and crop damage (Pimentel 2005). Therefore, the development of alternative management resources is of great interest. The purpose of this research was to evaluate the biological properties of *A. altissima* with the specific objective of determining if its phytochemicals can influence Lepidopteran oviposition behavior.

Spodoptera frugiperda larvae were purchased from Benzon Research (Carlisle, PA) and reared at 21°C with 16:8 h L:D cycles until pupation. Pupae were transferred by hand to individual 100 x 15 mm petri dishes until emergence. Newly emerged moths were kept isolated for two days to optimize fecundity (Rogers and Marti 1994).

Ailanthus altissima leaflets were collected from the campus of Millersville University and stored at −20°C. Four-week-old *Z. mays* was grown from seed in the Millersville University greenhouse (25°C, 14:10 h L:D cycles) and harvested immediately prior to extraction. Tissue (25 g) was pulverized with mortar and pestle then extracted with deionized, distilled water (100 ml) for one hour. The supernatant was clarified by centrifugation (5 min, 2,400 rpm, 21°C) and applied to oviposition substrates.

Twenty-six oviposition chambers were constructed using 950 ml mason jars containing cotton balls soaked in 10% sucrose as the moth food source. Cotton balls were replaced every 48 hours. Strips of chromatography paper (Whatman #1), 12 x 4 cm long, were saturated with their respective treatment, air dried for 2 h, and suspended into the chambers. Undiluted *A. altissima* extract contained 13.6 µg/µl residue with a final application concentration (1.0x) of 10.2 mg/strip. Control strips were treated with deionized water only. Each oviposition chamber represented one replicate.

Five male and five female *S. frugiperda* were introduced into each of thirteen oviposition chambers containing four different oviposition substrate treatments including: deionized water (control), *Z. mays* only, *A. altissima* only, and *Z. mays/A. altissima* combination. The *Z. mays/A. altissima* combination was prepared by sequentially treating the substrate in *Z. mays* extract, followed by *A. altissima* extract, with drying periods (2h) after each application. Thirteen chambers were prepared (as described) to test a concentration series whereby *A. altissima* extract concentrations of 0.0x, 0.25x, 0.5x, and 1.0x were applied onto substrates previously treated with *Z. mays* extract. The 1.0x concentration consisted of undiluted extract.

A total of 9,220 eggs were found on oviposition strips across 13 oviposition chambers examining host preference (Fig. 1). *Spodoptera frugiperda* demonstrated significantly more egg deposition on substrate coated with *Z. mays* extract (x = 54.2%) compared to water (x = 18.3%) or *A. altissima* extract (x = 8.3%) (F = 18.33; df = 3, 48; P < .0001) (Fig. 1). *Zea mays* extract (alone) was preferred 6.5x more than the *A. altissima* extract (alone) and 5.5x more than the combined *Z. mays + A. altissima* extracts (x = 9.7%) (Fig. 1). A post hoc Tukey test showed no significant difference in oviposition activity exists when comparing the negative control (water) with *Z. mays + A. altissima* extract or *A. altissima* extract alone (Fig. 1).

When the two extracts were combined, egg deposition on *Z. mays* substrates decreased as the concentration of *A. altissima* extract increased (F = 31.69; df = 3, 48; P < 0.001) (Fig. 2). A post hoc Tukey test showed differences exist between 0.0x (x = 46.9%) and 0.25x (x = 25.6%) as well as 0.25x and 0.5x (x = 12.3%); no significant difference was present between the 0.5x and 1.0x (x =
of *A. altissima* in .0001). All oviposition substrates were saturated of profiles at sites of oviposition influences how manipulation of chemical metabolite and Tripathi 2014). hexane fractions used by Rojas et al. (Pandey 2013) be due to the presence of different chemical substrate. This difference in behavior may a preference for oviposition on corn-treated deterrent properties, while here we observed that extracts of corn exhibited oviposition Interestingly, Rojas et al. (2003) reported with tactile cues having been demonstrated be more influential on oviposition behavior avile, tactile, or chemical contact cues would not rely on visual cues; instead, vol da chemicals can directly deter oviposition, as seen extract suggests that the novel phytochem- to increasing concentrations of *Z. mays* oviposition on *S. frugiperda* substrate in response (Fig. 2). The decreased frequency of oviposition in a concentration-depen- dent manner, when applied to the preferred host substrate (Fig. 2). While it is possible that sequential treatment of the substrate diluted host phytochemical concentration, this is not anticipated as the twice satu- rated 0.0x control remained attractive to *S. frugiperda*. The decreased frequency of oviposition on *Z. mays* substrate in response to increasing concentrations of *A. altissima* extract suggests that the novel phytochem- icals can directly deter oviposition, as seen in Senrung et al. (2014).

As a nocturnal ovipositor, *S. frugiper- da* would not rely on visual cues; instead, vol- atile, tactile, or chemical contact cues would be more influential on oviposition behavior with tactile cues having been demonstrated to be highly important (Rojas et al. 2003). Interestingly, Rojas et al. (2003) reported that extracts of corn exhibited oviposition deterrent properties, while here we observed a preference for oviposition on corn-treated substrate. This difference in behavior may be due to the presence of different chemical combinations present in the water-soluble fraction here compared to the methanol and hexane fractions used by Rojas et al. (Pandey and Tripathi 2014).

Little is currently known regarding how manipulation of chemical metabolite profiles at sites of oviposition influences *S. frugiperda* behavior. While allelopathic activity by *A. altissima* has been extensively investigated (Heisey 1996, Heisey and Heisey 2003, Albochi et al. 2013), the impact of its phytochemicals on oviposition behavior is less well understood. Through this work, evidence has been provided of previously unknown biological activity present in phytochemicals from *A. altissima* that det- rimentally affects *S. frugiperda* oviposition behavior. Extracts from *A. altissima* have been demonstrated to reduce survivorship in pea aphid, *Acrystosiphon pisum* (Harris) (De Feo et al. 2009) and reduce feeding activity/growth in *S. littoralis* (Pavela et al. 2014). Both De Feo et al. (2009) and Pavela et al. (2014) identified the quassinoid ailanthone as the biologically relevant phytochemical in *A. altissima*, however, neither group addressed oviposition behavior. While ail- anthone is potentially present in the extract evaluated in this study, it was not chemically confirmed and it is not clear if this phyto- chemical could influence oviposition; thus further experiments on this metabolite are warranted.

Our demonstration of reduced ovipo- sition is fundamental to the potential use of *A. altissima* as an alternative oviposition deterrent in an agricultural setting. Overuse of established pesticides has already led to resistance in Noctuidae agricultural pests, including *Spodoptera exigua* (Hübner) (Ah- mad et al. 2018) and *Spodoptera littura* (F.) (Shad et al. 2012), emphasizing the need for new crop protection resources. Precedent clearly exists for phytochemical application (Isman 2006) as demonstrated by cyperme- thrin and permethrin, which both act as effective insecticidal and deterrent agents for *S. frugiperda* (Usmani and Knowles 2001). For example, crude hexane extracts (1% conc.) from curry leaf, *Murraya koenigii* (L.), reduced oviposition in the Noctuid *S. littura* by ~60% (Senrung et al. 2014). Further, essential oils present in cinnamon, clove, gin- ger, mint, and thyme significantly reduced oviposition (>80%) by the velvetbean cater- pillar, *Anticarsia gemmatalis* (Hübner) when applied to host plants (Ribeiro et al. 2015). To our knowledge, this study represents the first evidence of *S. frugiperda* oviposition deterrence facilitated by phytochemicals from *A. altissima*. Future efforts to identify/ isolate the semiochemical(s) present in *A. al- tissima* will potentially facilitate application in agricultural settings as a replacement for, or in conjunction with standard pesticides.

Acknowledgments

This project was supported with funding from institutional sources including the Neimeyer-Hodgson Research Grant and the

![Figure 2](image-url)
Millersville University Faculty Academic Development Grants Program. The authors thank John R. Wallace for his guidance and critical feedback regarding this text.

Literature Cited

Drummond Island is Michigan’s second largest island, covering about 130 square miles (≈ 83,131 ac or 33,642 ha) with 58% being state-owned and managed by the Michigan Department of Natural Resources as part of the Lake Superior State Forest (Karen Rodock, Michigan DNR, personal communication). Drummond Island lies near the northwestern end of Lake Huron and is the easternmost point of Michigan’s Upper Peninsula (Fig. 1a). The bedrock on Drummond Island is largely limestone and dolomite (a magnesium rich limestone), and in many areas is exposed at the surface, forming broad, flat expanses known as alvars that are covered with little or no soil and usually dominated by grasses and sedges (Lincoln 2018).

Several tree species occur on Drummond Island and other nearby islands. The most common conifers include balsam fir [Abies balsamea (L.) Mill.], tamarack [Larix laricina (Du Roi) K. Koch], white spruce [Picea glauca (Moench) Voss], black spruce [Picea mariana (Mill.) Britton, Sterns & Poggenburg], red pine (Pinus resinosa Sol. ex Aiton), white pine (Pinus strobus L.), northern white cedar (Thuja occidentalis L.), and eastern hemlock [Tsuga canadensis (L.) Carrière]. Similarly, the most common hardwood tree species include red maple (Acer rubrum L.), sugar maple (A. saccharum Marshall), yellow birch (Betula alleghaniensis Britton), paper birch (B. papyrifera Marshall), American beech (Fagus grandifolia Ehrh.), white ash (Fraxinus americana L.), black ash (F. nigra Marshall), green ash (F. pennsylvanica Marshall), American beech (Fagus grandifolia Ehrh.), bigtooth aspen (P. grandidentata Michaux), trembling aspen (P. tremuloides Michx.), northern red oak (Quercus rubra L.), and American basswood (Tilia americana L.) (Scharf and Chamberlin 1978, Weatherbee 2014, MDNR 2015, Reznicek et al. 2016, Lincoln 2018).

In 2015, at the time this study began, the Asian buprestid known as the emerald ash borer (EAB, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), an invasive pest from Asia, was not trapped in either year.

Keywords: Borers, Agrilus planipennis, funnel trap, lures, trap height, trap color

Buprestidae, Cerambycidae, and Siricidae Collected in Baited Funnel Traps on Drummond Island, Chippewa County, Michigan

Robert A. Haack
USDA Forest Service, Northern Research Station, 3101 Technology Blvd., Suite F, Lansing, MI 48910
(e-mail: robert.haack@usda.gov (emeritus))

Abstract

Trapping of bark- and wood-infesting insects in 2015 and 2016 at multiple locations on Drummond Island in northern Lake Huron, using baited multi-funnel traps, yielded 4 species of Buprestidae, 24 Cerambycidae, and 4 Siricidae. In 2015, all funnel traps were baited with the plant volatiles α-pinene, ethanol, and cis-3-hexenol, and were either black or green in color, and placed either at heights similar to the lower canopy of nearby trees (4-5 m) or at 1-2 m above groundline. In 2016, all traps were green, hung at 1-2 m above groundline, and baited with the cerambycid pheromones fuscumol acetate, monochamol, and syn-(2,3)-hexanediol. In 2015, 29 species of Buprestidae, Cerambycidae, and Siricidae were captured, compared with 9 cerambycids in 2016. The original target insect, emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), an invasive pest from Asia, was not trapped in either year.
The initial objective of the present study in 2015 was to monitor for presence of EAB on Drummond Island by setting out baited funnel traps at various locations around the island. In 2016 another survey took place, but smaller in scale, using funnel traps with different baits. In this paper a list is presented of the bark- and wood-boring Buprestidae, Cerambycidae, and Siricidae that were collected during the 2-year study.

Methods: 2015 Study. Six trapping sites were selected in 2015, five on Drummond Island itself and one on Arrow Island (AI; N 46.0236° Lat, W 83.8239° Long), a small (2.5 ac, 1 ha), state-owned island near (0.4 km) the west side of Drummond Island (Fig. 1b). The other sites were generally located on the eastern side of Drummond Island, anticipating that if EAB were to fly over water to Drummond Island they would come from infestations to the west in Michigan’s Upper Peninsula or from the north on St. Joseph Island (Fig. 1a). The northernmost trapping site was located on Bruce Point (B; N 46.0908°, W 83.7194°) on state land with traps placed in trees near the shoreline (Fig. 1b). Moving southward, traps were placed along the forest edge at Wa-Wen Resort (W), Arrow Island (AI), Dix Point (D), Township Park (P), Anderson Point (A), and Helen Lake (H). Drummond Island is to the left of the red asterisk in the inset map of Michigan.

Traps were deployed during 4–6 June 2015 and taken down on 3 October 2015 (∼120 trapping days). The traps were checked irregularly, usually every 3–4 weeks. A kayak was used to reach the traps on Arrow Island. At each site, four 12-unit funnel traps (Contech Enterprises Inc., Victoria, British Columbia, Canada) were deployed. Two of the traps had black funnels and two had green funnels like those pictured in Petrice and Haack (2015). The funnels of all traps were coated with Fluon (Northern Products Inc., Woonsocket, RI), a slippery substance that improves trapping efficiency (Graham et al. 2010). Two traps, one of each color, were suspended from branches in the lower canopy of dominant trees so that the bottom of the collection cup was about 4-5 m above groundline. The other two traps, one of each color, were suspended from branches in the lower canopy of dominant trees so that the bottom of the collection cup was about 1 m above groundline. Typically, the two traps of the same color were suspended from the same tree or two trees within 5 m of each other. The other two traps were suspended from one or two trees that were at least 10 m away from the first pair. Traps were suspended from ash trees at four sites (1st, AI, B, and W), but not the other two sites (A and
D) where no ash trees were nearby. Most of the selected ash trees had some branch dieback, but none had signs of EAB infestation (e.g., EAB adult exit holes or EAB larval galleries; Haack et al. 2015). In all cases, traps were suspended so that they were clearly visible, and any interfering branches were pruned. The base of the collection cups had a small screen funnel to allow rainwater to drain. A circular piece of window screening was fitted snugly near the bottom of each cup to suspend captured insects above any moisture that accumulated. Pieces of No-Pest Strip (Spectrum Group, St. Louis, MO) were placed inside each collection cup to quickly kill trapped insects. Dichlorvos, an organophosphate insecticide, is the active ingredient in No-Pest Strips.

Three different attractant lures were attached to the inside of each funnel trap and changed every 6–7 weeks. The lures included one α-pinene UHR (ultra-high release) pouch with a release rate of 2.3 g per day at 26 °C (Alpha Scents, Inc., West Linn, OR), one ethanol UHR pouch with a release rate of about 300 mg per day at 20 °C (Synergy Semiochemicals Corporation, Delta, BC), and two cis-3-hexenol bubble caps with a combined release rate of 7.4 mg per day at 20 °C (Contech Enterprises Inc.). The α-pinene and ethanol lures are common attractants for a wide range of bark- and wood-infesting insects (Millar and Hanks 2017, Rabaglia et al. 2019). The volatile leaf alcohol cis-3-hexenol serves as a host attractant for EAB adults (Poland et al. 2019). In addition, at Anderson Point (A), a single unbaited black funnel trap was deployed in the lower canopy near the other traps as a blank control.

2016 Study. Six trapping sites were used in 2016, including three of the original sites (A, P, and W; Fig. 1b). The three new sites, from north to south, were along the forest edge at the GEMS (Grouse Enhanced Management Systems) site on state land (G; N 46.0580°, W 83.6622°), a forested area of the Drummond Island Township Park that had recently been selectively logged (P; N 45.9884°, W 83.7850°), and in a forest opening near Helen Lake on state land (H; N 45.9547°, W 83.7514°; Fig. 1b). A single Fluon-coated, green, 12-unit funnel trap was deployed at each site. The 2016 study was not focused on EAB and therefore sites with conifers and hardwoods (Millar and Hanks 2017), and they can be suspended from the same traps with no apparent antagonistic effects on attraction to cerambycids (Fan et al. 2019). In addition, at the Anderson Point (A) site, a single unbaited green funnel trap was deployed in the lower canopy near the other trap as a blank control.

Insect sorting and identification. In both years, all insects in the collection cups were emptied into labeled plastic zip-lock bags and kept frozen until sorted. Insects were later removed from one bag at a time and placed in a Petri dish and viewed under a dissecting microscope. All specimens of Buprestidae, Cerambycidae, and Siricidae were removed and placed in labelled vials or pinned. These insects were identified using various reference books and keys, including Wellso et al. (1976) and Paiero et al. (2012) for Buprestidae; Yanega (1996) and Lingafelter (2007) for Cerambycidae, and Schiff et al. (2006, 2012) for Siricidae. Identifications were later confirmed by comparing specimens with previously identified insects in the Michigan State University (MSU), Department of Entomology, Albert J. Cook Arthropod Research Collection in East Lansing, MI. Currently, the borers identified in this paper reside in the author’s personal collection but later will be placed in the MSU collection.

Results: 2015 Study. Overall, 129 borers (4.5 borers per 100 trap-days) were collected in the 24 baited traps in 2015, including 7 buprestids (4 species, but no EAB), 115 cerambycids (21 species), and 7 siricids (4 species) (Table 1). No borers were collected in the single unbaited control trap. Of the 21 cerambycid species, five were members of the subfamily Cerambycinae, six were Lamiinae, eight were Lepturinae, and two were Spondylidinae (Table 1). Nine of the 21 cerambycid species develop primarily in conifers (softwoods), 11 mostly in broadleafed trees (hardwoods), and the larval hosts of one cerambycid species are still unknown: Idiopidonia pedalis (LeCote) (Table 1). Similarly, one of the buprestid species de-
Table 1. Details on the bark- and wood-infesting Buprestidae, Cerambycidae, and Siricidae collected in baited funnel traps on Drummond Island in 2015 and 2016.

<table>
<thead>
<tr>
<th>Family, Subfamily, Species</th>
<th>Year(s) when collected</th>
<th>2015 Total</th>
<th>2015 Total</th>
<th>Sites where collected in 2015–16</th>
<th>Primary months collected in 2015–16</th>
<th>Common larval hosts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2015 B / G</td>
<td>2015 U / C</td>
<td>B / G</td>
<td>2015–16</td>
<td></td>
</tr>
<tr>
<td>CERAMBYCIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clytus ruricola (Olivier)</td>
<td>2015</td>
<td>0 / 3</td>
<td>2 / 1</td>
<td>3</td>
<td>1st W</td>
<td>VII-VIII</td>
</tr>
<tr>
<td>Cyrtophorus verrucosus (Olivier)</td>
<td>2015</td>
<td>1 / 1</td>
<td>0 / 2</td>
<td>2</td>
<td>B W</td>
<td>VI-VII</td>
</tr>
<tr>
<td>Microclytus gazellula (Haldeman)</td>
<td>2015</td>
<td>1 / 2</td>
<td>1 / 2</td>
<td>3</td>
<td>D W</td>
<td>VI</td>
</tr>
<tr>
<td>Neoclytus acuminatus (Fab.)</td>
<td>2016</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>W</td>
<td>VI-VII</td>
</tr>
<tr>
<td>Pronoera collaris (Kirby)</td>
<td>2015</td>
<td>1 / 0</td>
<td>0 / 1</td>
<td>1</td>
<td>W</td>
<td>VI-VII</td>
</tr>
<tr>
<td>Xylotrechus undulatus (Say)</td>
<td>2015-16</td>
<td>12 / 12</td>
<td>9 / 15</td>
<td>24</td>
<td>1st A A D W</td>
<td>VI-VIII</td>
</tr>
<tr>
<td>Lamiae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acanthocinus pusillus (Kirby)</td>
<td>2015-16</td>
<td>2 / 2</td>
<td>2 / 2</td>
<td>4</td>
<td>1st D P</td>
<td>VI-VIII</td>
</tr>
<tr>
<td>Aegomorphus modestus (Gyllenhal)</td>
<td>2015-16</td>
<td>1 / 0</td>
<td>0 / 1</td>
<td>1</td>
<td>H W</td>
<td>VI-VIII</td>
</tr>
<tr>
<td>Astylus collaris (Haldeman)</td>
<td>2015-16</td>
<td>2 / 2</td>
<td>2 / 2</td>
<td>6</td>
<td>D G W</td>
<td>VI-VIII</td>
</tr>
<tr>
<td>Graphisurus fasciatus (DeGeer)</td>
<td>2016</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>P</td>
<td>VII-VIII</td>
</tr>
<tr>
<td>Monochamus marmorator (Kirby)</td>
<td>2015-16</td>
<td>0 / 1</td>
<td>0 / 1</td>
<td>2</td>
<td>A G</td>
<td>VII-VIII</td>
</tr>
<tr>
<td>Monochamus notatus (Drury)</td>
<td>2015-16</td>
<td>2 / 0</td>
<td>2 / 0</td>
<td>3</td>
<td>A H</td>
<td>VIII-IX</td>
</tr>
<tr>
<td>Monochamus scutellatus (Say)</td>
<td>2015-16</td>
<td>10 / 10</td>
<td>10 / 10</td>
<td>59</td>
<td>1st A G H P W</td>
<td>VI-IX</td>
</tr>
<tr>
<td>Lepturinae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bellamira scalaris (Say)</td>
<td>2015</td>
<td>2 / 0</td>
<td>0 / 2</td>
<td>2</td>
<td>1st W</td>
<td>VII-VIII</td>
</tr>
<tr>
<td>Evodinus monticola (Randall)</td>
<td>2016</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>A</td>
<td>V-VI</td>
</tr>
<tr>
<td>Grammoptera subargentata (Kirby)</td>
<td>2015</td>
<td>1 / 0</td>
<td>1 / 0</td>
<td>1</td>
<td>B</td>
<td>IX</td>
</tr>
<tr>
<td>Hyperplatys aspersa (Say)</td>
<td>2015</td>
<td>1 / 0</td>
<td>1 / 0</td>
<td>1</td>
<td>AI</td>
<td>VII-VIII</td>
</tr>
<tr>
<td>Idiopidonia pedalis (LeConte)</td>
<td>2015</td>
<td>1 / 0</td>
<td>1 / 0</td>
<td>1</td>
<td>W</td>
<td>VI-VII</td>
</tr>
<tr>
<td>Pidonia rufoflavus (Say)</td>
<td>2015-16</td>
<td>0 / 2</td>
<td>1 / 0</td>
<td>2</td>
<td>1st A W</td>
<td>VI-VIII</td>
</tr>
<tr>
<td>Rhagium inquisitor (L.)</td>
<td>2015</td>
<td>2 / 1</td>
<td>2 / 1</td>
<td>3</td>
<td>1st D W</td>
<td>VI-VIII</td>
</tr>
<tr>
<td>Trachysida mutabilis (Newman)</td>
<td>2015</td>
<td>1 / 3</td>
<td>4 / 0</td>
<td>4</td>
<td>1st D W</td>
<td>VI-VIII</td>
</tr>
<tr>
<td>Trigonarthris minnesotana (Casey)</td>
<td>2015</td>
<td>20 / 0</td>
<td>12 / 8</td>
<td>20</td>
<td>1st A B W</td>
<td>VI-VIII</td>
</tr>
</tbody>
</table>
Table 1. Continued.

<table>
<thead>
<tr>
<th>Family, Subfamily, Species</th>
<th>Year(s) when collected</th>
<th>2015</th>
<th>2015</th>
<th>Total for 2015</th>
<th>Total for 2016</th>
<th>Sites where collected in 2015–16</th>
<th>Primary months collected in 2015–16</th>
<th>Common larval hosts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spondylidinae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asemum striatum (L.)</td>
<td>2015</td>
<td>6 / 8</td>
<td>7 / 7</td>
<td>14</td>
<td>0</td>
<td>D, W</td>
<td>VI-VII</td>
<td>Conifers</td>
</tr>
<tr>
<td>Tetropium cinnamopterum Kirby</td>
<td>2015</td>
<td>1 / 1</td>
<td>1 / 1</td>
<td>2</td>
<td>0</td>
<td>D, W</td>
<td>VI-VII</td>
<td>Conifers</td>
</tr>
<tr>
<td>BUPRESTIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agrius anxius Gory</td>
<td>2015</td>
<td>4 / 3</td>
<td>3 / 4</td>
<td>7</td>
<td>0</td>
<td>W</td>
<td>VII-VIII</td>
<td>Betula</td>
</tr>
<tr>
<td>Buprestis maculativentris Say</td>
<td>2015</td>
<td>0 / 1</td>
<td>1 / 0</td>
<td>1</td>
<td>0</td>
<td>W</td>
<td>VIII</td>
<td>Conifers</td>
</tr>
<tr>
<td>Dicera tenebrica (Kirby)</td>
<td>2015</td>
<td>2 / 1</td>
<td>0 / 3</td>
<td>3</td>
<td>0</td>
<td>W</td>
<td>VIII-IX</td>
<td>Populus</td>
</tr>
<tr>
<td>Poecilonota cyanipes (Say)</td>
<td>2015</td>
<td>1 / 1</td>
<td>1 / 1</td>
<td>2</td>
<td>0</td>
<td>W</td>
<td>VIII-IX</td>
<td>Populus</td>
</tr>
<tr>
<td>SIRICIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sirex nigricornis Fabricius</td>
<td>2015</td>
<td>7 / 0</td>
<td>4 / 3</td>
<td>7</td>
<td>0</td>
<td>A</td>
<td>IX</td>
<td>Conifers</td>
</tr>
<tr>
<td>Urocerus albicornis (Fabricius)</td>
<td>2015</td>
<td>1 / 0</td>
<td>1 / 0</td>
<td>1</td>
<td>0</td>
<td>1st</td>
<td>VII-VIII</td>
<td>Conifers</td>
</tr>
<tr>
<td>Urocerus cressoni Norton</td>
<td>2015</td>
<td>3 / 0</td>
<td>2 / 1</td>
<td>3</td>
<td>0</td>
<td>1st</td>
<td>VII</td>
<td>Conifers</td>
</tr>
<tr>
<td>Xeris melancholicus (Westwood)</td>
<td>2015</td>
<td>2 / 0</td>
<td>1 / 1</td>
<td>2</td>
<td>0</td>
<td>B</td>
<td>VII-IX</td>
<td>Conifers</td>
</tr>
</tbody>
</table>

1 Trap color: B = black, G = green.
2 Trap location: U = understory, C = canopy.
3 Trapping site codes given in Fig. 1b.
4 Months: V = May, VI = June, VII = July, VIII = August, IX = September.
veloped in conifers and three in hardwoods (Table 1). All four siricid species developed in conifers (Table 1).

Ten of the 29 borer species were each represented by only a single individual, and six others by only two individuals each (Table 1). By contrast, only four of the 29 borer species were collected in numbers of 10 individuals or greater, all of which were cerambycids, including *Asemum striatum* (L.) (14 individuals), *Monochamus scutellatus* (Say) (20), *Trigonarthris minnesotana* (Casey) (20), and *Xylotrechus undulatus* (Say) (24; Table 1). Of the six trapping sites, Arrow Island had the fewest with only 3 borer species collected (all cerambycids), whereas Wa-Wen Resort had the most, with 19 species collected (3 buprestids and 16 cerambycids).

There were no striking differences between the diversity of borers collected in traps placed in the understory (catching 22 of the 29 species) compared with those placed in the lower canopy (catching 21 of the 29 species). For the four cerambycid species that were captured most frequently, they were captured at equal or nearly equal numbers in traps placed at the two height positions: 7 of 14 *A. striatum* were captured at the lower position (χ^2 test, $P = 1$), and similarly, 10 of 20 *M. scutellatus* ($P = 1$), 11 of 20 *T. minnesotana* ($P = 0.655$), and 13 of 24 *X. undulatus* ($P = 0.683$).

Considering trap color, the buprestids and cerambycids were captured in both black and green traps, whereas all siricids were captured in black traps. Overall, three of the four buprestid species and 18 of the 21 cerambycid species were captured in black traps, compared with three buprestid and 13 cerambycid species being collected in green traps. Of the four most frequently collected cerambycids, only *T. minnesotana* showed a strong color preference with all 20 individuals collected in black traps (χ^2 test, $P < 0.0001$). By contrast, the others were captured at equal or nearly equal numbers in black and green traps: *A. striatum* ($P = 0.593$), *M. scutellatus* ($P = 1$), and *X. undulatus* ($P = 1$).

Borers were captured during each of the five trapping periods. Overall, 25 individual borers (9 species) were collected during the first collecting period that ended on 23 June 2015, 41 (16 species) on 12 July, 45 (13 species) on 15 August, 47 (7 species) on 1 September, and 4 (4 species) on 3 October. Of the 29 borer species collected, the cerambycid *Microlytus gazellula* (Haldeman) was only captured during the first sampling period in June, whereas the cerambycid *Grammoptera subargentata* (Kirby) and siricid *Sirex nigricornis* Fabricius were only captured in the last sampling period that occurred mostly in September and ended in early October (Table 1).

2016 Study. Overall, 53 borers (6.0 borers per 100 trap-days), representing 9 cerambycid species, were collected in the six baited traps used in 2016 (Table 1). No buprestids or siricids were trapped in 2016, and no borers were collected in the single unbaited control trap. Moreover, of the nine cerambycid species, one was a member of the subfamily Cerambycinae, seven were Lamiinae, and one was a Lepturinae (Table 1). Six of the nine cerambycid species collected in 2016 had been captured in 2015 and three were new (Table 1). Four of the nine 2016 cerambycid species developed primarily in hardwoods and five in conifers (Table 1).

Six of the nine 2016 cerambycid species were represented by only a single individual, one was collected twice, another six times, and one (*M. scutellatus*) 39 times. No borers were collected at DIX Point (D) in 2016. At the other five 2016 sites, usually only two or three cerambycid species were captured throughout the entire trapping season, and only *M. scutellatus* was captured at all five sites (Table 1).

From 6 to 19 borers were captured during each of the first five trapping periods, but none were collected during the last period (12 September to 20 October 2016). Overall, 6 individual borers (2 species) were collected during the first collecting period that ended on 4 June 2016, 10 (3 species) on 4 July, 7 (4 species) on 20 July, 19 (4 species) on 21 August, and 12 (2 species) on 12 September. Besides *M. scutellatus*, the only other cerambycid collected during the first collection period that ended on 4 June was *Eovodinus monticola* (Randall), and similarly *Monochamus notatus* (Drury) was the only other borer trapped during 21 August to 12 September (Table 1).

Discussion. The original impetus for this study was to sample for EAB on Drummond Island. However, no EAB adults were collected in either 2015 or 2016. Moreover, as of June 2020, EAB has still not been reported on Drummond Island, nor on nearby Neubish Island (Michigan) to the northwest or Cockburn Island (Ontario) to the southeast (Fig. 1a). Nevertheless, EAB is becoming more common on the mainland of Michigan’s eastern Upper Peninsula, as well as on the mainland of Ontario between Sault Ste. Marie and Manitoulin Island, which is directly east of Cockburn Island. EAB was first detected on Manitoulin Island in 2011. Given that EAB-infested areas generally surround Drummond Island, EAB will likely arrive someday, either by active flight or being assisted by humans, such as...
by transporting infested firewood (Haack et al. 2010). In 2018, Michigan’s internal EAB quarantine was repealed given that EAB was known to occur in all but four of Michigan’s 83 counties at that time (MDARD 2018). As a result, movement of ash trees, ash logs, and ash firewood was no longer regulated within Michigan, although the public was still encouraged not to move firewood long distances. Therefore, inadvertent movement of EAB-infested ash trees, logs, or firewood could easily bring EAB to Drummond Island as well as other nearby islands.

All 32 species of borers collected in this study (4 buprestids, 24 cerambycids, and 4 siricids) were already reported to occur in Michigan (Gosling 1973, Welso et al. 1976, Gosling and Gosling 1977, Schiff et al. 2012). Of these borers, county occurrence data in Michigan have only been published for the cerambycids (Gosling 1973, 1983, 1984; Gosling and Gosling 1977). In these four papers, county-level data are presented for 228 cerambycid species, of which 104 species were recorded in Michigan’s Upper Peninsula. Using the above four papers as the baseline, seven of the 24 cerambycid species reported in this paper (Aegomorphus modestus (Gyllenhal), Atylopus collaris (Haldeman), Grammoptera subargentata (Kirby), Hyperplatys aspersa (Say), Microclytus gazellula (Haldeman), Monochamus marmorator Kirby, and Pidonia ruficollis (Say)) are new county records for Chippewa County, MI, and two of these species are recorded for the first time in Michigan’s Upper Peninsula (A. collaris and M. gazellula). Undoubtedly many more borer species occur on Drummond Island than were collected in this study, considering that Michigan has at least 120 species of buprestids (Wellso et al. 1976; Haack et al. 2002, 2009; Maier 2012; MacRae and Basham 2013), 228 species of cerambycids (Gosling 1973, 1983, 1984; Gosling and Gosling 1977), and 10 species of siricids (Schiff et al. 2012).

Although no striking differences in borer diversity were found between understory and canopy traps in the present 2015 study, other researchers have found significant differences relative to trapping height (Dodds 2014, Rassati et al. 2019, Ulyshen and Sheehan 2019). Similarly, there were few striking differences in buprestid and cerambycid attraction to traps of different colors in the present study (black vs. green), although others have reported that trap color did affect borer diversity and abundance. For example, many adult buprestids show a preference for green traps over black traps (Petrice and Haack 2015, Skvarla and Dowling 2017) as well as green over purple traps (Rassati et al. 2019). For cerambycids, Rassati et al. (2019) found that trap color (green vs. purple) significantly affected diversity and abundance at the cerambycid subfamily level and for certain individual cerambycid species. This was true in present study as well, with black traps preferred by the lepturine cerambycid *T. minnesotana*, and similarly by the cerambycine *Xylotrechus colonus* (Fabricius) (Skvarla and Dowling 2017). In other studies, black traps were shown to be superior to clear traps or white traps in catching various buprestids, cerambycids, and siricids (de Groot and Nott 2001, Hurley et al. 2015, Allison and Redak 2017). In a study in South Africa, where six traps of each color were used, more *Sirex noctilio* F. adults were captured in black intercept panel traps (33 individuals; Alpha Scents, West Linn, OR) and black 12-unit funnel traps (28), compared with either light blue (6) or dark blue (2) funnel traps (Brett P. Hurley, University of Pretoria, South Africa, unpublished data).

The lures used in the present study were dramatically different between years, with plant volatiles (a-pinene, ethanol, and cis-3-hexenol) used in 2015 and cerambycid pheromones (fuscimol acetate, monocam, and syn-(2,3)-hexanediol) used in 2016. Many borers use plant volatiles to locate their host plants, especially those that infest trees stressed by environmental factors such as drought (Mattson and Haack 1987, Haack and Petrice 2019). Environmental stress often increases ethanol production in plant tissues in both hardwoods and conifers, and similarly the production of the resin monoterpene a-pinene in stressed conifers (Kimmerer and Kozlowski 1982, Mattson and Haack 1987, Turtola et al. 2003). Ethanol and a-pinene, especially when combined, are well known attractants to many bark- and wood-infesting insects, including many cerambycids and siricids (Miller 2006, Johnson et al. 2013, Millar and Hanks 2017, Hanks et al. 2018). The ethanol and α-pinene lures used in 2015 were likely responsible for attracting most of the wood borers collected that year. By contrast, the cis-3-hexenol lures were specifically used to attract EAB, given that this alcohol is released from hardwood trees, including ash foliage, and is known to be attractive to EAB adults (Poland et al. 2019). Nevertheless, no EAB were collected in 2015, suggesting that EAB had not yet invaded Drummond Island, or if present, was not near any of the six 2015 trapping sites.

Of the nine cerambycid species collected in 2016, when cerambycid pheromones were used as lures, two species are known to use fuscumol acetate as a pheromone component [Aegomorphus modestus and Graphisurus fasciatus (DeGeer)]; three use monocam (Monochamus marmorator, *M.
notatus and M. scutellatus); and one uses syn-(2,3)-hexanediol [Neoclytus acuminatus (Fab)]. (Millar and Hanks 2017, Hanks et al. 2018, Meier et al. 2020). No pheromone information was found for the three other cerambycids collected in 2016 (Acanthocinus pusillus Kirby, Astylopsis collaris, and Evodinus monticola).

There are likely many additional bor-der species on Drummond Island than were collected in this study, given that relatively few lures and trapping techniques were em-ployed as well as relatively few habitats were sampled. In addition to the genera of the tree species listed in the introduction of this pa-per, many other trees and large shrubs occur on Drummond Island and nearby islands, including native species of Alnus, Amelanch-ier, Celastrus, Corylus, Cornus, Crataegus, Dirca, Ilex, Juniperus, Lonicera, Malus, Myrica, Prunus, Rhus, Rhamnus, Ribes, Rosa, Rubus, Salix, Sambucus, Shepherdia, Sorbus, Symphoricarpos, Taxus, and Ulmus (Scharf and Chamberlin 1978, Weatherbee 2014, Reznicek et al. 2016, Lincoln 2018). Borers may also use some of the island’s smaller shrubs and woody vines as larval hosts, such as species of Arctostaphylos, Dier-villa, Gaultheria, Hypericum, Rhododendron (formerly Ledum), Spiraea, Vaccinium and Vitis. For example, the Cerambycinae Cyrtophorus verrucosus (Oliver), two of which were collected in this study (Table 1), are 7–11 mm long and have been reared from many species of hardwood trees (Yanega 1996, Lingafelter 2007), and also woody shrubs in the genera Cornus, Shepherdia, and Vaccinium (Hefferen et al. 2018), all of which grow on Drummond Island.

Acknowledgments

The author thanks Karen Rodock (Michigan DNR) for permission to survey on State land on Arrow Island and Drummond Island, and for data on state land acreage on Drummond Island; Erin Bullas-Appleton (Canadian Food Inspection Agency) for providing EAB survey information for Ontario; Helen Enander (Michigan Natural Features Inventory) for creating the base maps used in this publication; Lawrence Hanks (University of Illinois at Urbana-Champaign) for providing background information on cerambycid pheromones; Brett P. Hurley (University of Pretoria, South Africa) for providing unpublished data, and Davide Rassati (University of Padua, Italy), Toby R. Petrice (USDA Forest Service, Northern Research Station), and two anonymous reviewers for comments on an earlier draft of this paper. This research was supported in part by the USDA Forest Service.

Literature Cited

Haack, R. A., and T. R. Petrice. 2019. Historical population increases and related inciting factors of Agrilus anxius, Agrilus bilineatus, and Agrilus granulatus liragus (Coleoptera: Buprestidae) in the Lake States (Michigan,

Hurley, B. P., J. Garnas, and M. F. Cooperband. 2015. Assessing trap and lure effectiveness for the monitoring of *Sirex nocilio*. *Agricultural and Forest Entomology* 17: 64–70

Lingafelter, S. W. 2007. Illustrated key to the longhorned wood-boring beetles of the eastern United States. Coleopterists Society, Special Publication 206, North Potomac, MD.

MacRae, T. C., and J. P. Basham. 2013. Distributional, biological, and nomenclatural notes on Buprestidae (Coleoptera) occurring in the U.S. and Canada. The Pan-Pacific Entomologist 89: 125–142.

INSTRUCTIONS FOR AUTHORS

SUBJECTS

Papers dealing with any aspect of entomology will be considered for publication in The Great Lakes Entomologist. Appropriate subjects are those of interest to professional and amateur entomologists in the North Central States and Canada, as well as general papers and revisions direct-ed to a larger audience while retaining an interest to readers in our geographic area. All manuscripts are refereed by at least two reviewers.

SUBMISSION REQUIREMENTS

Manuscripts must be typed in English with line numbers, double-spaced, with 1” margins and uploaded. Please use italics rather than under-line. Use subheadings sparingly and set them into paragraphs in boldface.

Footnotes (except for authors’ addresses, which must be on the title page, and treated as a footnote), legends, and captions of illustrations should be on separate pages.

Titles should be concise, identifying the order and family discussed. The author of insect species must be given fully at least once in the ab-stract and text, but not in the title. If a common name is used for a species or group, it should be in accordance with the common names published by the Entomological Society of America, or the Entomology Society of Canada.

The format for references must follow that described in the style guidelines used by the Entomological Society of America, except that journal titles are not abbreviated.

Please make sure that all references cited in the text appear in the Literature Cited section, and that all references in the Literature Cited appear in the body of the paper.

FIGURES AND TABLES

Photographs should be high resolution digital files (300 dpi). Drawings, charts, graphs, and maps must be scaled to permit proper reduction without loss of detail.

Figures must meet the following criteria: (1) gray-scale images must be submitted with a resolution of at least 300 dpi; (2) line art or graphs must be sent as 600 dpi.

Scanned images should be saved in the native application. Never embed the images in a word-processing document.

Captions for illustrations should be numbered consecutively and typed in order at the end of the manuscript. Captions should not be attached to illustrations.

Tables should be kept as uncluttered as possible, and should fit normally across a page when typeset.

Tables cannot be submitted as Excel files or graphics, but only as text. Contributors should follow the Council of Biology Editors Style Manual, 7th ed., and examine recent issues of The Great Lakes Entomologist for proper format of manuscripts.

Photographs should be high resolution digital files (300 dpi). Drawings, charts, graphs, and maps must be scaled to permit proper reduction without loss of detail. Figures must meet the following criteria: (1) gray-scale images must be submitted with a resolution of at least 300 dpi; (2) line art or graphs must be sent as 600 dpi.

Scanned images should be saved in the native application. Never embed the images in a word-processing document.

Captions for figures should be numbered consecutively and typed at the end of the manuscript. Captions should not be attached to illustrations.

Tables should be kept as uncluttered as possible, and should fit normally across a page when typeset.

Tables cannot be submitted as Excel files or graphics, but only as text. Contributors should follow the Council of Biology Editors Style Manual, 7th ed., and examine recent issues of The Great Lakes Entomologist for proper format of manuscripts.
Protection of Ash Trees Under Extended Emerald Ash Borer Pressure
Fredric Miller and Dan Mueller ... 1

Reinstatement of *Andrena vernalis* Mitchell (Hymenoptera: Andrenidae)
from Synonymy with *A. ziziae* Robertson
Zachary M. Portman, Ian G. Lane, Gabriella L. Pardee,
Daniel P. Cariveau ... 25

First Records of *Megachile apicalis* (Hymenoptera: Megachilidae) for Illinois
Found in Heavily Urbanized Areas within the City of Chicago
Andrea M. Gruver and Paul J. CaraDonna ... 41

New State Species Records and Noteworthy Re-captures of Michigan (USA)
Trichoptera
David C. Houghton ... 47

Hunting Billbug *Sphenophorus venatus* (Coleoptera: Dryophthoridae)
Adult Feeding Preference and Attraction to Warm- and Cool-Season Turfgrasses
Alexandra G. Duffy and Douglas S. Richmond.............................. NOTE 53

Karshomyia caulicola* (Diptera: Cecidomyiidae) Associated with
Sclerotinia-Infected Soybean in the United States and Canada
Robert L. Koch, Bruce D. Potter, Joseph Moisan-De Serres,
Janet J. Knodel, Veronica Calles-Torrez, John Gavloski,
Theresa Cira, Mads Bartz, Raymond J. Gagné NOTE 59

First Record of the Hairy Maggot Blow Fly, *Chrysomya rufifacies*
(Diptera: Calliphoridae) in Indiana
Kristi Bugajski and Raenah Bailey ... NOTE 64

Ailanthus altissima Aqueous Extract Deters *Spodoptera frugiperda*
Oviposition
Ryan L. Wagner and Jordan A. Card ... NOTE 68

Buprestidae, Cerambycidae, and Siricidae Collected in Baited Funnel Traps on Drummond Island, Chippewa County, Michigan
Robert A. Haack ... NOTE 73

Cover photo
Karshomyia caulicola (Coquillett)
Photo by
Joseph Moisan-De Serres