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Understanding the potential efficacy 
of a candidate weed biological control agent 
has become more prominent in recent years, 
especially pre-release studies of an agent’s 
impact on plant performance (e.g., Grevstad 
et al. 2013, Reddy and Mehelis 2015). Such 
assessments have been proposed for prior-
itizing agents for further study or release, 
in order to enhance the success rate of weed 
biological control programs (Balciunas and 
Coombs 2004, McClay and Balciunas 2005). 
The seasonal duration and amount of dam-
age that an agent might inflict on a targeted 
invasive plant will depend in part on the 
number of agent generations (voltinism) 
produced in the area of release. The induc-
tion of diapause in an insect population is a 
key component determining the number of 
generations and seasonality of insect activ-
ity. For many insects of temperate zones, 
photoperiod is a primary cue for diapause 
induction (Tauber et al. 1986).

Black swallow-wort [Vincetoxicum 
nigrum (L.) Moench = Cynanchum loui-
seae Kartesz and Gandhi] and pale swal-
low-wort [V. rossicum (Kleopow) Barbar. = 
Cynanchum rossicum (Kleopow) Borhidi] 

(Apocynaceae-subfamily Asclepiadoideae) 
are European twining vines introduced into 
North America in the mid- to late-1800s. 
They have become invasive over the last 40 
years in a variety of natural areas and pe-
rennial cropping systems, ranging from open 
fields to forest understories. The primary 
infestations occur in southeastern Canada 
and the northeastern United States, with 
increasing concerns in the Midwest, includ-
ing states and provinces of the Great Lakes 
Basin (DiTommaso et al. 2005, Averill et 
al. 2011, USDA/NRCS 2019). Both species 
are long-lived, herbaceous perennials that 
spread via wind-dispersed seeds. Floral and 
faunal communities are negatively affected 
by swallow-worts, including the globally-rare 
alvar ecosystems of the Lake Ontario basin 
(DiTommaso et al. 2005, Ernst and Cap-
puccino 2005). Broad-spectrum herbicides 
have been the main management tool, but 
are not necessarily desired in natural areas. 
Mechanical control is generally unsatisfac-
tory in reducing swallow-wort densities and 
cover (DiTommaso et al. 2013). A biological 
control program has been in development 
for several years, but to date only the moth 
Hypena opulenta (Christoph) (Lepidoptera: 
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Abstract
A biological control program is in development for two swallow-wort species (Vince-

toxicum, Apocynaceae), European vines introduced into northeastern North America. One 
candidate agent is the defoliator Abrostola asclepiadis (Denis and Schiffermüller) (Lepi-
doptera: Noctuidae). The moth reportedly has up to two generations in parts of its native 
range. We assessed the potential multivoltinism of Russian and French populations of the 
moth by rearing them under constant and changing photoperiods, ranging from 13:11 to 
16:8 hour (L:D). The French population was also reared outdoors under naturally-changing 
day lengths at a latitude similar to northern New York State. Less than six adult moths 
emerged, with one exception, for any photoperiod treatment. We expect A. asclepiadis to 
be univoltine if it were to be released into North America, limiting its potential impact on 
swallow-worts. It should therefore be given a lower priority for release.

Keywords:  Cynanchum rossicum, Cynanchum louiseae, swallow-wort, weed biolog-
ical control, photoperiod
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Erebidae) has been released in Canada 
(2013) and more recently in the U.S. (Weed 
et al. 2011b, Young and Weed 2014, Milbrath 
and Biazzo 2016).

One candidate biological control agent 
is the defoliating moth Abrostola asclepiadis 
(Denis and Schiffermüller) (Lepidoptera: 
Noctuidae). It is widely distributed in 
Europe in open field to shaded habitats. 
In some years and locations it defoliates 
entire stands of Vincetoxicum hirundina-
ria Medik., its primary host plant (Förare 
1995, Leimu and Lehtilä 2006). The moth 
overwinters as a pupa in leaf litter and has 
one-two generations per year. Two genera-
tions have been reported in some areas of 
central Europe (Förare 1995) that would 
have similar latitudes to northern New York 
and southern Ontario. Abrostola asclepiadis 
appears to be host specific to Vincetoxicum 
spp. (Hazlehurst 2011). However, a single 
defoliation of black or pale swallow-wort 
has a limited effect on the plants (Weed et 
al. 2011a, Milbrath et al. 2019). A bivoltine 
population of A. asclepiadis that can damage 
the plants over a greater duration of the 
season is therefore desired for release into 
North America. Many noctuid species have a 
facultative diapause, in which the number of 
generations produced depends in part on the 
response of populations at a given latitude 
to environmental cues such as photoperiod 
(Tauber et al. 1986, Saulich et al. 2017). 
No diapause-induction studies have been 
conducted with A. asclepiadis.

Our objective was to determine the 
potential number of generations of different 
populations of A. asclepiadis that could oc-
cur in the invasive range of swallow-worts. 
Populations were exposed to photoperiods 
they would typically experience during the 
growing season in the northeastern U.S. 
and southeastern Canada. The results were 
to be used in concert with separate impact 
studies and a population matrix model for 
swallow-worts (Milbrath et al. 2018, 2019) to 
predict the efficacy of this candidate agent.

Materials and Methods
Insect cultures. Eggs of Russian A. 

asclepiadis were collected 29 May–6 June 
2013 from Vincetoxicum spp. leaves in the 
Russian North Caucasus, near Kislovodsk 
(43°56.400' N, 42°41.734' E) and Borgus-
tanskaya (44°02.0436' N, 42°30.161' E). Eggs 
were transported to the Zoological Institute, 
Russian Academy of Sciences, St. Petersburg 
for the first diapause experiment (see Ini-
tial diapause test). Diapausing pupae were 
subsequently shipped to the senior author 
for additional experiments described below. 
Eggs of French A. asclepiadis were collected 
16 June 2014 from V. hirundinaria at Glan-

dage, France (44°42.033’ N, 05°37.000' E). 
Larvae were reared on V. hirundinaria at 
the European Biological Control Laboratory 
(EBCL), Montferrier-sur-Lez, France, under 
a 10:14 hour (L:D) photoperiod to induce 
diapause and pupae were shipped to the 
senior author. Voucher specimens have been 
deposited with the Cornell University Insect 
Collection, Department of Entomology, Itha-
ca, NY (under Lot Number 1263).

Diapausing pupae were overwintered 
at 5°C and a 10:14 hour (L:D) photoperiod for 
up to 9 months. Pupae were then transferred 
to a chamber set at 14:10 hour (L:D) and 
25:20°C for adult emergence, mating, and 
oviposition. Two groups of adult moths were 
held in 60 3 60 3 60 cm aluminum-mesh cag-
es containing honey-water and potted pale 
or black swallow-wort plants for oviposition. 
Leaves with egg masses were collected daily 
(< 24 hour post-oviposition) to minimize the 
time at a non-experimental photoperiod.

Initial diapause test. Neonate lar-
vae (1st laboratory generation) were placed 
individually into ventilated 0.25 liter plastic 
vials and randomly assigned to custom-made 
programmable chambers set to 20 or 25˚C 
and one of six photoperiod treatments 
at each temperature (hours, L:D): 13:11, 
16:8, 13:11 to 16:8 fast, 16:8 to 13:11 fast, 
13:11 to 16:8 slow, or 16:8 to 13:11 slow. A 
short day of 13 hours represents natural 
day lengths in the North Caucasus in ear-
ly-April or early-September, and a long day 
of 16 hours exceeds the longest summer 
day length (sunrise to sunset, Fig. 1). For 
the fast photoperiod change, larvae were 
transferred to the alternate photoperiod at 
approximately the third instar or halfway 
through their larval development (day 11 at 
20°C, day 8 at 25˚C). For the slow change, 
day length was increased (or decreased) daily 
in a stepwise fashion over a 5 day (20°C) or 
3 day (25°C) period. Ten larvae were used 
per treatment combination for each of the 
two Russian populations for a total of 240 
larvae. Larvae were fed excised leaves from 
Vincetoxicum sp. plants that had also been 
collected from the North Caucasus region. 
The larvae were checked daily and leaves 
were replaced. Upon pupation, pupae were 
maintained under their same experimental 
rearing conditions for an additional 40 days, 
which is over twice the expected time for 
emergence from non-diapausing pupae (L. 
Milbrath, unpublished data). Live pupae 
that had not emerged as adults at the end 
of this period were considered to be in dia-
pause. Temperature, photoperiod and source 
population were treated as a single combined 
factor and tested against the categorical data 
of diapause (yes or no) using the G-test with 
simultaneous test procedures (Sokal and 
Rohlf 1995).
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Constant photoperiods. Based 
on the most likely conditions to promote 
non-diapause development from the initial 
diapause test, we used 20ºC for further 
tests with a Russian (Kislovodsk) or French 
(Glandage) population. The average monthly 
temperature in Ithaca, NY from June to Au-
gust ranges from 18.1–20.4ºC (NRCC 2018). 
The experimental design was a one-way 
treatment structure in a completely random-
ized design with five constant photoperiods 
[14:10, 14.5:9.5, 15:9, 15.5:8.5 or 16:8 hours 
(L:D)]. A short day of 14 hours represents 
natural day lengths across New York State 
and north to Ottawa, ON in late-April or 
mid-August, and a long day of 16 hours ex-
ceeds the longest summer day length (Fig. 
1). Populations were tested in different years 
and consisted of larvae of the 2nd laboratory 
generation.

Groups of egg masses were randomly 
assigned to one of the five photoperiod treat-
ments in programmable incubators (model 
I30BLL, Percival Scientific, Inc., Perry, IA 
50220). Egg masses were initially placed 
into 14.5 3 2 cm Petri dishes lined with 
moist filter paper. At the black-head stage 
(c. 5 days), groups of c. 80 fertile eggs were 

transferred to 27 3 19 3 9.5-cm ventilated 
plastic boxes for larval rearing with five 
replicates per photoperiod treatment. Boxes 
contained a false bottom of plastic mesh to 
allow frass to collect away from developing 
larvae and plant leaves. Bouquets of green-
house-grown pale or black swallow-wort 
stems in water-filled vials were added. Addi-
tional bouquets were added as needed until 
3rd instar larvae were present, at which time 
cut stems of field-collected pale swallow-wort 
were added daily to maintain an excess of 
food. Black and pale swallow-wort are both 
suitable hosts for A. asclepiadis (Weed et al. 
2011b). Boxes were cleaned of old stems and 
frass every few days. Prior to eclosion of 4th 
instars, larvae were randomly culled to 50-55 
larvae per box to minimize cannibalism and 
food shortages.

Upon pupation of all larvae, boxes were 
cleaned, cocoons were opened and live pupae 
were placed back into the boxes on a layer of 
moist vermiculite. Pupae were maintained 
under their respective experimental rearing 
conditions and observed for adult emergence 
over a 50 day period. Remaining pupae were 
considered alive but in diapause if there was 
visible movement of the abdomen when gen-

Figure 1. Day lengths (sunrise to sunset, USNO 2018) from spring through autumn at select North 
American and European locations.
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tly squeezed with soft forceps. Dead pupae 
were dissected. If pharate adults were found, 
the individual was scored as non-diapausing. 
All other dead pupae were omitted from 
analyses. The percentage of diapausing A. 
asclepiadis was calculated as: % Diapause = 
[Number of live pupae/(number of emerged 
adults + number of live pupae + number of 
dead pharate adults)] (Miller et al. 2000). 
Diapausing pupae were subsequently 
ramped down to 5°C over 4 weeks and over-
wintered as previously described for use in 
the next experiment. Percentage diapause 
data were separately analyzed for the two 
populations using analysis of variance with 
a logit transformation (PROC MIXED, SAS 
Institute 2012). Means were separated using 
the least-significant difference test (SAS 
Institute 2012).

Changing photoperiods. An exper-
iment was conducted to assess the effect of 
changing photoperiods on diapause induc-
tion for the Russian and French populations 
(3rd laboratory generation) of A. asclepiadis. 
The experimental design, methods and 
analysis were identical to those described 
under Constant photoperiods except that 
two changing and two constant photoperiod 
treatments were used: 14:10 to 16:8, 16:8 to 
14:10, 14:10, and 16:8 hours (L:D). For the 
changing photoperiod treatments, boxes of 
larvae were transferred to the alternate 
photoperiod the day after most larvae in a 
box molted to 3rd instar.

Natural photoperiods. An outdoor 
observational study was conducted in France 
at the EBCL (43°41.033' N, 03°52.500' E) 
over a three-year period using insects from 
the Glandage population. Day lengths at 
EBCL are comparable to those in northern 
New York State (Fig. 1). In 2016 and 2017, 
eggs and 1st instars of A. asclepiadis were 
collected from the field in June and reared to 

the 2nd instar in Petri dishes in the laborato-
ry at c. 22°C and under natural day lengths 
(next to a window). Larvae were then placed 
on potted V. hirundinaria plants, 2–4 larvae 
per pot, covered with a 50 cm tall mesh bag 
supported by metal rods. Pots were located 
outdoors in a semi-shaded location where the 
larvae experienced naturally-changing day 
lengths. Pots were watered as needed and 
observed for adult emergence. Pupae were 
recovered from all pots in August or Septem-
ber and remained outdoors on a covered and 
potted plant for additional observations. In 
2016, plants were infested with a total of 78 
2nd instars on 22 June and 6 July. In 2017, 
plants were infested with 108 2nd instars on 
19–26 June.

Pupae from the 2017 experiment were 
overwintered outdoors at EBCL, and ten 
adult moths emerged 7–11 May 2018. Moths 
were maintained outdoors on a potted and 
covered V. hirundinaria plant and eggs were 
collected, approximately one month earlier 
than in the field at Glandage. On 17 May, 
107 eggs and 72 1st instar larvae were dis-
tributed among 20 potted V. hirundinaria 
plants and pots were covered with a mesh 
bag. Additional foliage was added to the 
caged plants to allow larvae to complete 
their development. Pupation was observed 
to occur beginning 12 June. Pupae were 
recovered from all pots on 27 July (c. 45 
days after first pupation) and transferred to 
a glasshouse cage containing potted plants 
for an additional month of observation under 
natural day lengths.

Results

Varying numbers of non-diapausing 
moths emerged at 20ºC, but not 25ºC, for 
both Russian populations (Table 1). The 
greatest emergence, and therefore generally 

Table 1. Percentage diapause (number of live pupae) for two populations of Russian 
Abrostola asclepiadis reared under different temperatures and photoperiod regimes1.
Temperature (ºC) Photoperiod (hours, L:D) Kislovodsk Borgustanskaya
20 13:11 60 (10) ab 100 (10) a
 16:8 100 (10) a 100 (10) a
 13:11 to 16:8 fast 90 (10) ab 90 (10) ab
 16:8 to 13:11 fast 20 (10) b 56 (9) ab
 13:11 to 16:8 slow 100 (9) ab 100 (9) ab
 16:8 to 13:11 slow 100 (10) a 100 (10) a
25 13:11 100 (10) a 100 (10) a
 16:8 100 (10) a 100 (9) ab
 13:11 to 16:8 fast 100 (9) ab 100 (10) a
 16:8 to 13:11 fast 100 (10) a 100 (10) a
 13:11 to 16:8 slow 100 (9) ab 100 (10) a
 16:8 to 13:11 slow 100 (10) a 100 (10) a
1 Values followed by the same letter are not significantly different (G-test with simultaneous test 
procedure performed on counts, P > 0.05).
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the least percentage diapause, occurred with 
the Kislovodsk population under the “16:8 
to 13:11 fast” treatment. Some appreciable 
emergence also occurred for this same treat-
ment for the Borgustanskaya population and 
under a short day (13:11) for the Kislovodsk 
population (Table 1).

In subsequent tests with daylengths 
ranging from 14 to 16 hours and much larger 
numbers of larvae, 0–5 adults of the French 
or Russian populations emerged from the 
various constant or changing photoperi-
od treatments. Percentage diapause was 
therefore 98–100% across the different tests 
(Table 2). In outdoor tests in France, one 
adult moth emerged from 18 surviving pupae 
in 2016 (94% diapause), no adults emerged 
from 38 pupae in 2017 (100% diapause), and 
no adults emerged from 95 pupae in 2018 
(100% diapause).

Discussion

Both the Russian (Kislovodsk) and 
French (Glandage) populations of A. as-
clepiadis appear to be univoltine under 
photoperiods they will experience during 
the spring and summer in the northeastern 
USA and southeastern Canada (Fig. 1). The 
fact that the two geographically separated 
populations in our study showed a similar 
photoperiodic response suggests that other 
populations that may be considered for 
release (e.g., Ukraine, Hazlehurst 2011) 
would also likely be univoltine, at least 
under the experimental conditions we pro-
vided. In Europe, A. asclepiadis appears to 
be a primarily univoltine species although 
bivoltine populations have been reported 
(Förare 1995, Weed et al. 2011a). Voltinism 

among other temperate noctuid species in 
the same subfamily (Plusiinae) as A. ascle-
piadis is variable (Saulich et al. 2017). Some 
species are strictly univoltine with an obli-
gate diapause, e.g., Charanyca trigrammica 
(Hufnagel) (Sokolova 2007). Other species 
have a facultative diapause and variable 
numbers of generations depending on the 
latitude or when offspring are produced in 
the spring relative to current photoperiods, 
e.g., the congener A. triplasia (L.) (Saulich 
et al. 2015).

In this study we did not determine the 
critical day length for diapause induction 
in A. asclepiadis, i.e., the day length that 
results in 50% of the individuals in a popu-
lation entering diapause. However, a small 
pilot study in which larvae of the Kislovodsk 
population were reared at 18:6 hour (L:D) 
resulted in only 60% diapause (n=10, L. 
Milbrath, unpublished data). This result and 
the significant emergence of adult moths for 
a few treatments in the first diapause test 
(Table 1) suggest that the Russian popula-
tions of A. asclepiadis have a facultative, and 
not an obligate, diapause (Sokolova 2007). 
Nevertheless, the experimental conditions 
observed to promote non-diapause develop-
ment (>16 hours day length, a rapid 3 hour 
decrease in day length) are ecologically unre-
alistic. No such conditions naturally occur in 
either the area of moth collection or intended 
introduced range (Fig. 1). The French popu-
lation may also have a facultative diapause, 
but the conditions which might promote a 
second generation are unknown. Rearing 
the French population outdoors at a typical 
time (2017 test) or even one month earlier 
than normal (2018 test) did not result in a 
(partial) second generation.

Table 2. Mean (± SD) percentage diapause (total live insects assessed) for two source pop-
ulations of Abrostola asclepiadis reared under different constant and changing photoperiod 
regimes, 20ºC 1.
Photoperiod (hours, L:D) Glandage, France Kislovodsk, Russia
Constant  
   14:10 99.3 ± 1.5 (171) a 100 ± 0 (219)
   14.5:9.5 99.5 ± 1.0 (198) a 100 ± 0 (196)
   15:9 100 ± 0 (188) a 100 ± 0 (197)
   15.5:8.5 99.5 ± 1.1 (199) a 100 ± 0 (181)
   16:8 100 ± 0 (196) a 100 ± 0 (140)
 F4, 20 = 0.50; P = 0.735 No analysis possible
Changing  
   14:10 to 16:8 99.1 ± 2.0 (196) a 97.8 ± 1.3 (192) b
   16:8 to 14:10 99.5 ± 1.1 (171) a 100 ± 0 (203) a
   14:10 control 100 ± 0 (201) a 100 ± 0 (218) a
   16:8 control 97.6 ± 3.0 (183) a 99.6 ± 1.0 (223) a
 F3, 16 = 1.80; P = 0.188 F3, 16 = 7.57; P = 0.002
1 Within each test and population, individual means followed by the same letter are not significantly 
different (F-protected LSD test with logit-transformed data, P > 0.05; n=5).
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It is unknown if a change in critical 
day length for diapause induction would 
occur in A. asclepiadis should it be released 
into North America, allowing for two gener-
ations. The critical day length for the bio-
logical control agent Diorhabda carinulata 
(Desbrochers) (Coleoptera: Chrysomelidae) 
was documented to decrease following 
release, allowing it to extend its range to 
more southern latitudes (Bean et al. 2012). 
It is also unknown if sufficient degree-days 
are available to complete development to 
the (overwintering) pupal stage should a 
second generation of A. asclepiadis occur in 
the future. Two generations of A. asclepi-
adis are reported from central Europe and 
an occasional partial second generation in 
Sweden is thought to occur, perhaps due to 
differing seasonal temperatures or critical 
day lengths (Förare 1995).

The potential impact of A. asclepiadis 
appears to be limited with a univoltine life 
cycle. Available defoliation impact data of 
A. asclepiadis (Milbrath et al. 2019) com-
bined with swallow-wort population models 
(Milbrath et al. 2018) suggest that a single 
complete defoliation will cause popula-
tion declines in only a limited number of 
slow-growing forest and field infestations of 
pale and black swallow-wort. This contrasts 
with the released agent H. opulenta that 
will likely have two generations per summer 
(Weed and Casagrande 2010); it is projected 
to control more populations of swallow-wort 
due to the greater amount of damage it can 
potentially inflict. Agents that have multi-
ple generations, and therefore can provide 
season-long damage of targeted weeds, are 
preferred because they limit the ability of 
plants to recover. This is particularly true 
for perennial plants (Syrett 1983, Hosking et 
al. 1994, Winston et al. 2014). As also noted 
by Milbrath et al. (2019), direct competition 
between A. asclepiadis and H. opulenta is 
likely and should be avoided. For these rea-
sons, A. asclepiadis should be considered a 
low priority agent for release.
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