
  

 

 

 

Is the sales growth rate of electric vehicles  

related to the rate of growth of charging infrastructure? 

 

 

 

 

Amar Agrawal 

Analytics and Modeling // Valparaiso University  

CS 525: Simulation and Modeling  

Professor Sonja Streuber  

December 14, 2022 

  



Introduction 

A vehicle that can travel at least partly on electricity is termed an electric vehicle (EV). This 
type of vehicle includes plug-in hybrids, battery electric vehicles, and hybrid electric vehicles 
(Xing et al., 2019). Electric vehicles have been around for quite a while but were in their dark 
era with almost no technological development until Toyota Prius was released in 1999; this 
was the first ever hybrid electric vehicle to be sold. Even though the concept was heard of 
here and there, electric vehicles had their fame shot up since the early 2010s, when Chevrolet 
and Nissan released their plug-in hybrids. In recent times, different companies, especially 
Tesla, have popularized electric vehicles and given gasoline cars competition for market 
share (Matulka, 2014).  

After ten years of explosive development, the number of electric cars sold worldwide reached 
ten million in 2020, which was a gain of 43% since 2019. In 2020, battery electric vehicles 
(BEVs) made up two-thirds of the stock and all new electric car registrations. China has the 
largest fleet with 4.5 million electric vehicles, but in 2020, Europe saw the largest annual rise 
to reach 3.2 million. The global market for all types of automobiles was significantly 
impacted by the economic impacts of the COVID-19 outbreak. In the first quarter of 2020, 
compared to the same period in 2019, fewer new cars were registered. Stronger activity in the 
second half helped to counterbalance this to some extent, but altogether there was a 16% 
decline year over year. Notably, global electric car sales share increased to 70% by a record 
high growth rate of 4.6% in 2020, despite conventional and overall new car registrations 
declining. The number of electric vehicle registrations rose in 2020 due to several causes. 
Notably, the total cost of ownership for electric cars is gradually improving in various 
nations. Several countries offered or extended tax advantages that protected the purchase of 
electric vehicles from the slump in the auto industry (International Energy Agency [IEA], 
2021). 

Prior studies generally suggest that, to increase consumer interest in EVs, charging options 
need to be made widely available, quick, and affordable (Zou et al., 2020). This model 
examines if there exists a very strong relationship between them or not. The model makes use 
of data available for the state of California and tries and predicts the sales patterns and 
charging infrastructure growth while calculating the interrelationship between them, utilizing 
correlation. 

Existing Models and Research  

Zou et al. (2020) carried out a research where the results of different features of charging 
infrastructures were analyzed to ascertain if it affected the preference for an electric vehicle 
both for new-car buyers and used-car drivers. The research highlighted that the used-car 
drivers were more concerned with the distance of the charging infra, as well as preferred 
faster-charging rates. The new-car buyers were more affected by the possibility of the EV 
being charged within their premises and safe parking spaces. My model here discusses the 
importance of the charging infrastructure and how it affects the sales growth of electric 
vehicles but does not include the features like distance or the speed of charging.  

Another research was carried out in Korea by Kim et al. (2019) to assimilate the importance 
of consumers’ intentions and desired time in buying battery electric vehicles (BEV) in Korea. 
Multiple factors were analyzed, and it was concluded that prior experience with BEV or 
simply knowing information about BEV was the major factor for buying an EV, followed by 
age and gender. Furthermore, older and female consumers were more inclined to buy the 
BEVs. Other factors that inclined people towards the BEVs were the government incentives 
and public parking allowance.   



A research was carried out by Cecere et al. (2018) with data from six different European 
countries on what features or improvements in an electric vehicle would increase the 
probability of buying the electric vehicle. The research concluded that price was the major 
factor in opting for an EV, followed by the driving range (the battery/charging capacity of the 
vehicle) and availability of charging infrastructure at homes. The top speed of the vehicle and 
recharging time of the vehicle was found to have a nominal effect on the purchase decision. 
My model is based on analyzing the importance of charging infrastructure available in the 
U.S. publicly instead of the private charging infrastructure, and the results obtained were 
significantly different. 

The Model 

This model has been developed to simulate the importance of the availability of charging 
infrastructure for the sales growth of electric cars in the U.S. state of California. Initially, the 
cost of an electric vehicle and its range was also considered being included in the scope of the 
model but were chosen to be omitted as the market price of cars was vague for different 
capacities with ambiguous after-sales benefits. Additionally, the lack of proper data on the 
actual requirement of range to be driven by average customers resulted in the exclusion of 
electric vehicles’ range from this model. 

The dataset used in this model consists of the rate of sales growth of the different types of 
electric vehicles and the rate of charging infrastructure available in the U.S. state of 
California between 2016 and 2021 (U.S. Department of Energy, 2021). By looking at the 
sales data trends, it was assumed that the sales followed a stochastic approach and were 
therefore implemented using a normal distribution. The charging infrastructure does seem to 
have an increasing trend from the data, but it has been assumed to fall after some time as the 
supply becomes scarce as time progresses. Therefore, the charging infrastructure growth rate 
has been modeled using a logistic function. 

Coming to the different entities used in this model, charging infrastructure is one of them, as 
it is the initial number of the charging infrastructure that the state starts with and is 
represented as a green patch in the environment. Then, there is the use of a ‘growth-rates’ 
variable that accounts for the sales growth percentage over the years, and its mean and 
standard deviation are computed. Another variable used in this model is the ‘infra-rates’, 
which stores the rate of growth of the charging infrastructures over the years. It initializes the 
maximum growth rate stored as P1 and the minimum growth rate as P2, which is a random 
number between 0.01 and the minimum growth rate. This approach has been used such that 
the minimum infrastructure growth rate can be a small number instead of the higher 
minimum rate that has been supplied by the data. Then ‘number-of-months’ has been used to 
keep a record of the number of model’s runs. The geographical state of California will be 
treated as the environment, with multiple charging stations as patches and output intended as 
plots on the interface. Each tick in the model represents a month passed and the sales and 
infrastructure growth rates are predicted at the end of 12 months. The model also makes use 
of the variable ‘number-of-years’, which tracks the years run in simulation. The model is 
currently chosen to predict the correlation between the two factors over five years, which is 
equivalent to 60 ticks. Apart from that, multiple lists namely, ‘probabilities’, ‘sales-
probabilities’, and ‘correlations’ have been used in the model to capture the growth rate of 
charging infrastructure, the growth rate of electric vehicle sales, and the correlation 
coefficient between the sales and charging infra being calculated over the model run, 
respectively.   

 



Method 

The model can be initialized with the ‘setup’ button, which imports the dataset and then 
initializes values for sales growth median and standard deviation to calculate the normal 
distribution of the sales growth in the sub-model ‘update-sales-rate’. Then, it initializes the 
minimum and maximum charging infrastructure growth rates for the logistic function. For the 
same, initially, the ‘setup-growth-logistic’ sub-model is run to initialize the values of 
‘growth-logistic-A’ and ‘growth-logistic-B’. This sub-model works by considering X1 and 
X2 which are the times when the model is assumed to have its highest and the lowest rate of 
infrastructure growth. As the current model run is 5 years (60 ticks), they have been 
initialized as 18 months as the infrastructure growth rate is assumed to start on the higher side 
and 42 months as infra development is expected to go lower after 3.5 years. After all this, the 
initialization is completed, then as the ‘go’ button is pressed, the model starts to simulate runs 
wherein it checks if a year has passed in the simulation, which is equivalent to the execution 
of 12 ticks. If a year has passed, then it calls the increase stations module, which in turn then 
takes the existing sales growth rate and the charging infra growth rate and calculates the 
correlation. Then, the sub-model ‘update-growth-prob’ is run to calculate the growth rate 
concerning the current charging infrastructure for the next iteration. Subsequently, the sub-
model ‘update-sales-rate’ is run to update the current EV sales growth rate following the 
normal distribution. As the different sales growth rates and infrastructure growth rates are 
calculated after every 12 ticks (passing of a year in the model), the respective lists are 
populated. After more than two iterations of the model, the correlation starts being calculated 
and is added to the ‘correlations’ list. The first two-year runs of the model do not have 
enough relevant data to calculate correlation and therefore are skipped. All the lists are then 
represented as graphs on the interface, such that each trend can be illustrated and looked 
upon. In addition, as per the calculated charging infrastructure growth rate, the number of 
patches is increased in the model using the ‘increase-stations’ sub-model. The BehaviorSpace 
experiment for the model’s sensitivity analysis is discussed below. 

 

Fig 1: Behavior Space Experiment Setup   



The model includes the BehaviorSpace experiments for different values of P1 and P2, which 
are the infra-growth rates different from the current input. For the infra-growth rates, P1 
values between 0.2 and 0.9 are simulated and the P2 values are run with values between 0.1 
and 0.8. This is because it is assumed that the growth rate will be decreasing after some 
period and P1 should never be lower than P2. Additionally, another experiment is included 
for cycling through the different median and standard deviation values for the sales growth 
rate's normal distribution. The median sales growth values are kept between 5 and 50, 
whereas the deviation has been assigned between 1 and 20. Both experiments produce a 
similar result to the current result for over 1000 runs. The final correlation value remains 
between 0.12- 0.18 during the different runs.  

Results 

The model’s different runs showed a low value for the correlation between the sales growth 
rate and the charging infrastructure. The model was first run using a median value of 17 for 
initial charging stations with 60 ticks and the data file referenced above.  

 
Fig 2: Results of the model using median charging infrastructure value showing average 

correlation value as 0.15 

The model was also run using lower and upper values of 3 and 33 for the charging 
infrastructure, but the resulting correlation was low in both cases. Figures 1 and 2 show a 
falling infrastructure growth graph as the growth rate decreases with time and the number of 
charging infrastructure can be seen rising. On the other hand, Figure 3 shows there is almost 
no change in the infrastructure growth rate as it starts with a higher value and no significant 
change can be seen in the charging stations numbers.  



 
Fig 3: Results of the model using low charging infrastructure value showing average 

correlation value as 0.20 

 

 
Fig 4: Results of the model using higher charging infrastructure value showing average 

correlation value as 0.09 

  



Discussion  

The model’s output shows that there is not a significant relationship between sales growth 
and the rate of charging infrastructure growth, as the final correlation values are significantly 
lower and below 0.2 in the majority of runs.  

One of the reasons for this might be the stochastic approach used for sales growth prediction. 
The sales growth rate in the input data has also been majorly affected due to COVID-19 
wherein the rates are not as high as it was expected and it also impacts some of the growth of 
charging infrastructure.  

Another important factor is the exclusion of the existing personal or workplace charging 
stations due to which the number of charging infrastructures currently being recorded is not 
as realistic. The data used in the model currently includes all types of public alternative 
power stations in California, but it does not account for the charging stations that people 
might have at their homes, workplaces, or any other property that is not deemed public. Due 
to this, the number of charging stations in the model is significantly lower than in reality due 
to the absence of records of the private charging infrastructure, which might have led to a 
lower correlation than expected.  

One of the limitations of the model is the number of charging infrastructures that can be 
chosen to initialize the model. The model currently has a slider that allows values from 1 to 
35 but produces output for values between 2 and 34. This is due to the logistic function used 
in the model, which restricts the charging infrastructure values. In the first case, when the 
charging infrastructure value is initialized as the exponential of the logistic variables results 
in a value higher than 0.5, which in turn makes it difficult for correlation to be calculated in 
the model. When a value like 35 is applied to the model, the exponential goes below 0.02, 
which obstructs the model from giving out its desired output.  

The model can be extended firstly by using a comprehensive number of charging 
infrastructures that include all the charging infrastructure available in the environment being 
considered. The data file can also be changed to add multiple years for past data along with 
different data from various locations. Another improvement in the model can be made in 
sorts of predicting the sales growth rate. In the above model, a simple normal distribution has 
been used for the sales growth with the basis of the input data files, but a better approach can 
be used for ascertaining accurate sales growth rates.   
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