Seasonal Shoot-Feeding by *Tomicus Piniperda* (Coleoptera: Scolytidae) in Michigan

Robert A. Haack
USDA Forest Service

Robert K. Lawrence
Missouri Department of Conservation

George C. Heaton
USDA Forest Service

Follow this and additional works at: https://scholar.valpo.edu/tgle

Part of the Entomology Commons

Recommended Citation

Available at: https://scholar.valpo.edu/tgle/vol33/iss1/10
SEASONAL SHOOT-FEEDING BY TOMICUS PINIPERDA (COLEOPTERA: SCOLYTIDAE) IN MICHIGAN

Robert A. Haack¹, Robert K. Lawrence² and George C. Heaton¹

ABSTRACT

Seasonal shoot-feeding by Tomicus piniperda (L.) was monitored at 2-week intervals on 15 Scotch pine, Pinus sylvestris L., trees from 8 April through 16 November 1994 in southern Michigan. All shoots that showed evidence of T. piniperda attack were removed every two weeks. In 1994, initial spring flight of T. piniperda began on 22 March. At least two live T. piniperda adults were found on the 15 trees on each sampling date from 8 April through 1 November 1994. In addition, at least one freshly attacked, beetle-free shoot was found on each sampling date except for 1 November. The greatest numbers of newly attacked shoots, with or without adults present, were found from mid-June through mid-August. All adults found in April and May were likely parent adults, while those from June onward were primarily brood adults. Therefore, at all times of the year, live T. piniperda adults can be found on live pine trees, either feeding in the shoots or overwintering at the base of the trunk. Implications of these findings are provided in light of the US federal quarantine on T. piniperda.

Tomicus piniperda is univoltine. Adults overwinter within the outer bark at the base of the trunk of live pine trees. In early spring, when daily high temperatures begin to exceed 12°C, T. piniperda adults initiate flight and seek suitable breeding material such as recently cut or fallen pine logs and stumps. After completing one egg gallery, some parent adults re-emerge and initiate additional egg galleries. In the Great Lakes region, adults of the new

¹USDA Forest Service, North Central Research Station, 1407 S. Harrison Road, Michigan State University, East Lansing, MI 48823.
²Current address: Missouri Department of Conservation, 1110 South College Ave., Columbia, MO 65201.
generation typically begin to emerge in June. These new adults fly to the
crowns of pine trees and feed inside one or more shoots during summer and
early fall. Then, in apparent response to the first few hard freezes in fall,
adults exit the shoots and move to their overwintering sites (Bakke 1968,
Haack and Lawrence 1995, 1997b; Långström 1983, McCullough and Smitley

Given the above life-history information, it was thought that there might
be a "T. piniperda-free" window in spring during which time pine nursery
stock could be shipped to areas outside the quarantine zone without inspec­
tion or treatment. In theory, this window of opportunity would begin after all
adults had left their overwintering sites in early spring and end before the
next generation of adults would start shoot feeding in early summer. This
scenario is based on the assumption that during spring, parent adults repro­
duce but do not shoot-feed. However, from studies in northern Europe
(Långström 1983, Salonen 1973), it was known that some T. piniperda par­
ent adults shoot-feed immediately after overwintering and then look for
breeding sites, while others first breed and then shoot-feed before starting
their next egg gallery. Since the original source or sources of the North Amer­
ican T. piniperda populations are not known (Carter et al. 1996), the type of
early-season shoot-feeding behavior reported in Scandinavia might also be
observed in the US. Therefore, given the great interest that the US nursery
industry had in this question, we decided to explore the seasonal shoot-feed­
ing behavior of a T. piniperda population in Michigan.

MATERIALS AND METHODS

In April 1994, we selected 15 open-grown Scotch pine, Pinus sylvestris L.,
trees that were growing in a Christmas tree plantation near Eaton Rapids,
Eaton County, MI, that was heavily infested with T. piniperda. The 15 trees
that we selected were 3–4 m tall and were growing in an area of the 10-ha
plantation that was no longer under active management, i.e., these pine
trees had not been sheared in several years and were generally 1–2 m taller
than the pine Christmas trees under active management.

On 8 April 1994, and continuing at 2-week intervals through 16 Novem­
ber 1994, we thoroughly inspected each of the 15 trees, cutting and removing
all current-year and 1-year-old shoots that showed evidence of T. piniperda
shoot feeding, i.e., a circular, ca. 2-mm wide, entrance hole through the bark.
On the first sampling date, we removed shoots attacked in 1994 as well as
those attacked in earlier years. Current-year attacks usually had resin near
the entrance hole that was yellow and relatively pliable, and the surrounding
needles were still green in color. Attacks from earlier years tended to have
resin that was whitish in color and would easily crumble when touched, and
the surrounding needles were usually yellow to brown in color. The attacked
shoots were placed in labeled plastic bags and then refrigerated until in­
spected, which was usually within 24 h of collection. During the inspection
process, we recorded the number of individual attacks (i.e., feeding tunnels)
on each shoot, the location of each attack (i.e., on current-year or 1-year-old
growth), the presence or absence of T. piniperda adults in each tunnel, and
whether each adult was alive or dead. In addition, other notes were taken on
the condition and length of the tunnels, the color and condition of the foliage,
the presence and condition of pitch tubes that surrounded the entrance to
some tunnels, and the color of the adult beetles.

A one-way ANOVA (PROC GLM, SAS Institute 1989) was used to test for
differences among collection periods in the average number of attacked
shoots per tree, after square root transformation, and the percentage of recently attacked shoots that contained *T. piniperda* adults, after arcsine square-root transformation. When the ANOVA was significant at the $p = 0.05$ level, mean separation among collection periods was conducted with the Ryan-Einot-Gabriel-Welsch multiple comparison test (Day and Quinn 1989, SAS Institute 1989).

RESULTS AND DISCUSSION

Overall, we found two or more live *T. piniperda* adults during every inspection from 8 April through 1 November 1994 (Fig. 1). No live adults were found in the shoots on the last inspection date of 16 November. In other 1994 studies that occurred at the same or a nearby field site, initial spring flight began on 22 March and fall shoot departure occurred primarily between mid-October and mid-November (Haack and Lawrence 1997). The first *T. piniperda* feeding tunnels found in current-year growth occurred on 2 June 1994.

During the April 1994 inspections of the 15 test trees, we collected 368 *T. piniperda*-attacked shoots that appeared to have been attacked in 1993 (Table 1). The first light-brown *T. piniperda* adults, indicating the new generation of beetles, were found in shoots collected on 15 June 1994. Newly emerged adults gradually turn from light brown to dark brown or black as
Table 1. Summary data for the number of prior-year (1993) or current-year (1994) shoots that had been attacked by *Tomicus piniperda* on each of 15 Scotch pine trees from which all attacked shoots were removed every 2 weeks from 8 April through 16 November 1994 in Michigan. Data are presented on the number of live adults collected per tree and the number of shoots per tree that had been recently attacked but lacked *T. piniperda* adults.

<table>
<thead>
<tr>
<th>Shoot collections from 8 April to 2 June 1994</th>
<th>Shoot collections from 15 June to 16 November 1994<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1993 attacks</td>
<td>1994 attacks</td>
</tr>
<tr>
<td>Tree</td>
<td>1993 attacks</td>
</tr>
<tr>
<td>1</td>
<td>37</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td>10</td>
<td>38<sup>a</sup></td>
</tr>
<tr>
<td>11</td>
<td>35<sup>a</sup></td>
</tr>
<tr>
<td>12</td>
<td>33</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>44(2)</td>
</tr>
<tr>
<td>Total</td>
<td>368<sup>a</sup></td>
</tr>
</tbody>
</table>

^aNumbers within parentheses represent the number of adults that were dead at the time of shoot inspection.

^bData were summed over two consecutive collection periods, starting with the 15 June collection period: June collections were made on 15 and 30 June, and similarly on 14 and 28 July, 12 and 26 August, 7 and 22 September, 4 and 18 October, and 1 and 16 November.
they conduct their maturation feeding inside the shoots (Långström 1983). Therefore, all live adults collected between 8 April and 2 June were likely parent adults, whereas the vast majority of adults collected on 15 June and onward were progeny adults. Data in Table 1 are divided between these two periods when primarily parent adults were shoot-feeding (8 April–2 June) or progeny adults were shoot-feeding (15 June–16 November). In Sweden, Långström (1983) noted that a few T. piniperda parent adults, especially females, could be found shoot-feeding throughout the entire summer and even into the fall. Moreover, Schroeder and Risberg (1989) reported that some T. piniperda adults can overwinter twice and even produce brood in the second season.

On each of the five collection dates from 8 April to 2 June, we found 4 to 10 live adults among the 15 study trees (Fig. 1). In addition, for each of the five collections from 8 April to 2 June, we found from 2 to 16 newly attacked shoots among the 15 trees that lacked adults (Fig. 1), indicating that some adults had entered the shoots, tunneled, and already left within the 2-week period between collections.

Overall, from 8 April to 1 November 1994, we collected 197 T. piniperda adults; 184 were alive and 13 were dead (Table 1). Of the 184 live adults, 29 were collected between 8 April and 2 June and thus were likely parent adults, while 155 were collected between 15 June and 1 November and were most likely progeny adults. Similarly, of the 13 dead T. piniperda adults collected in 1994, 4 were found in shoots that had apparently been attacked in 1993, 5 were in newly attacked shoots collected between 8 April and 17 May, and 4 were found in newly attacked shoots collected between 30 June to 12 August 1994 (Table 1). In addition, we found 131 newly attacked shoots on the 15 sample trees that lacked adults; 35 of these empty shoots were collected between 8 April and 2 June, and 96 were collected between 15 June and 16 November (Table 1).

Overall, for the 197 T. piniperda adults collected in this study, we recovered 1 adult per shoot on 183 occasions and 2 adults per shoot on 7 occasions. For the 7 shoots that contained 2 adults, there was 1 shoot that contained 2 dead adults (collected 8 April), 1 shoot that contained 1 dead and 1 live adult (collected 14 July), and 5 shoots that contained 2 live adults (1 shoot collected 15 June, 2 on 14 July, 2 on 29 July, and 1 on 7 September). When 2 adults were found on the same shoot, they were always in separate tunnels.

Each of the 15 test trees had evidence of T. piniperda attack in 1993 and 1994. In fact, each of the 15 trees had at least one live adult or one newly attacked shoot that lacked an adult between 8 April and 2 June 1994 (Table 1). Then, from the 15 June collection and onward, we collected between 2 and 22 live adults from each of the 15 test trees and an additional 1 to 17 newly attacked shoots per tree that lacked T. piniperda adults (Table 1).

Considering the period 15 June through 16 November when progeny adults were actively shoot-feeding, the average number of newly attacked shoots per tree, both with or without T. piniperda adults, was highest during June (6.4 attacks/tree), July (5.2), and August (3.2) (Table 2). Similarly, the average number of newly attacked shoots per tree that lacked live T. piniperda adults was highest during June (3.6 empty shoots/tree) and then decreased steadily through November (Table 2). Of the newly attacked shoots, the percent that contained T. piniperda adults was lowest for shoots collected during June (44%), and highest for shoots collected in September (92%) (Table 2). These results indicate that T. piniperda adults are especially active in June, often residing within a shoot for less than 2 weeks. In contrast, by late summer (e.g., September), fewer beetles and even fewer newly attacked but empty shoots are found, indicating that T. piniperda adults are
Table 2. Mean (±SE) number of live *Tomicus piniperda* adults per tree, mean number of shoots per tree that had been attacked by *T. piniperda* in 1994 but lacked an adult inside the shoot, and mean percent of the newly attacked shoots that contained one or more *T. piniperda* adults based on 15 Scotch pine trees from which all attacked shoots were removed every 2 weeks from April through November 1994 in Michigan. Data were summed over two consecutive collection periods, starting with the 15 June collection period because that is when adults of the new generation were first observed in the shoots.

<table>
<thead>
<tr>
<th>Month</th>
<th>No. of live adults ± SE</th>
<th>No. of empty shoots ± SE</th>
<th>No. of adults plus empty shoots ± SE</th>
<th>Percent of newly attacked shoots with T. piniperda ± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>June</td>
<td>2.8 ± 0.7 a</td>
<td>3.6 ± 0.9 a</td>
<td>6.4 ± 1.3 a</td>
<td>43.9 ± 6.2 b</td>
</tr>
<tr>
<td>July</td>
<td>3.5 ± 0.7 a</td>
<td>1.7 ± 0.5 b</td>
<td>5.2 ± 1.1 a</td>
<td>72.4 ± 6.8 ab</td>
</tr>
<tr>
<td>August</td>
<td>2.5 ± 0.5 a</td>
<td>0.5 ± 0.8 bc</td>
<td>3.2 ± 0.6 a</td>
<td>75.5 ± 8.6 ab</td>
</tr>
<tr>
<td>September</td>
<td>0.9 ± 0.3 b</td>
<td>0.1 ± 0.1 c</td>
<td>0.9 ± 0.3 b</td>
<td>91.7 ± 8.3 a</td>
</tr>
<tr>
<td>October</td>
<td>0.7 ± 0.2 b</td>
<td>0.2 ± 0.1 c</td>
<td>0.9 ± 0.3 b</td>
<td>78.1 ± 12.9 ab</td>
</tr>
<tr>
<td>November</td>
<td>0.1 ± 0.1 b</td>
<td>0.1 ± 0.1 c</td>
<td>0.3 ± 0.1 b</td>
<td>60.0 ± 28.9 ab</td>
</tr>
<tr>
<td>F</td>
<td>12.3</td>
<td>15.6</td>
<td>17.8</td>
<td>3.3</td>
</tr>
<tr>
<td>df</td>
<td>5,84</td>
<td>5,84</td>
<td>5,84</td>
<td>5,55</td>
</tr>
<tr>
<td>P<</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0112</td>
</tr>
</tbody>
</table>

June collections were made on 15 and 30 June, and similarly on 14 and 28 July, 12 and 25 August, 7 and 22 September, 4 and 18 October, and 1 and 16 November. Means followed by the same letter (within columns) are not significantly different at the p=0.05 level (Ryan-Einot-Gabriel-Welsch mean separation test).
1973) and Sweden (Långström 1983) in that some parent adults shoot-fed in spring prior to emergence of the new \(F_1 \) generation.

ACKNOWLEDGMENTS

We thank Greg Dufner for assistance with shoot dissections; Cal Hartline for use of his Christmas tree farm; and Deborah McCullough, Toby Petrice, Therese Poland, and Steve Seybold for their comments on an earlier draft of this paper.

LITERATURE CITED

