Parasitism of *Plathypena Scabra* (Lepidoptera: Noctuidae) by *Sinophorus Teratis* (Hymenoptera: Ichneumonidae)

Daniel M. Pavuk
Bowling Green State University

Charles E. Williams
Clarion University of Pennsylvania

Douglas H. Taylor
Miami University

Follow this and additional works at: https://scholar.valpo.edu/tgle

Part of the Entomology Commons

Recommended Citation

Available at: https://scholar.valpo.edu/tgle/vol28/iss3/2

This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at scholar@valpo.edu.
A study was conducted at the Ecology Research Center, Miami University, Butler County, Ohio, during the summer of 1990 to examine the effects of strip intercropping sorghum and soybean on the occurrence of parasitoids and incidence of disease in larvae of the green cloverworm, Plathypena scabra (F.) (Lepidoptera: Noctuidae), a sporadic pest of soybeans. The details of the experimental design and results are reported elsewhere (Williams et al. 1995).

Ten species of larval parasitoids were reared from a total of 1,522 P. scabra larvae (Williams et al. 1995). One species, Sinophorus teratis (Weed), has apparently not been reared from P. scabra larvae previously (e.g., Whiteside et al. 1967, Barry 1970, Lentz and Pedigo 1975, Roberts et al. 1977, Mueller and Kunalaca 1979, McCutcheon and Turnipseed 1981, Hammond 1983, Pedigo et al. 1983, Pavuk and Barrett 1993). However, Hammond (1983) reported a single specimen of Sinophorus sp. from green cloverworm, Lentz and Pedigo (1975) reared one individual of Sinophorus validus (Cresson) from P. scabra, and Pedigo et al. (1983) observed a small proportion of green cloverworm larvae parasitized by S. validus. Sinophorus teratis was formerly a synonym for S. validus; Sanborne (1984) removed S. teratis from synonymy with S. validus when he revised the world species of Sinophorus, and the two names now refer to two separate species. It is possible that records of S. validus from P. scabra may actually have been occurrences of S. teratis.

In addition, rates of parasitism of P. scabra by Sinophorus spp. in other investigations were extremely low compared to our findings. Percentage of green cloverworm larvae parasitized by S. teratis pooled across the sampling period (i.e., 27 July to 14 September; 8 weekly samples) in the five different soybean agroecosystems ranged from 2.3 to 5.3% (Williams et al. 1995). Surveys of green cloverworm parasitoids in the same study area but in different soybean agroecosystems in subsequent years failed to detect S. teratis (unpublished data). The occurrence of this parasitoid in this particular locality appears to be sporadic, and may be affected by varied plant community structure, among other factors (e.g., presence of alternate hosts). A survey on a larger scale and in widely separated, diverse soybean cropping systems would be valuable in determining the factors that may possibly influence parasitism of P. scabra by S. teratis.

ACKNOWLEDGMENTS

We thank the staff of the Ecology Research Center, especially M. Benninger-Truax, E. Bollinger, J. Ralley and R. Stander for field and laboratory
assistance. We also thank R.W. Carlson, USDA-ARS, Taxonomic Services Unit, Beltsville, MD for identifying Sinophorus teratis. This study was supported in part by an Ohio Academic Challenge Grant in applied ecology to the Department of Zoology, Miami University.

LITERATURE CITED