Synthesis and Characterization of Graphene oxide Polydopamine Aerogels for **Contaminant Removal in Water**

Dao Sysouvanh,¹ Arvid Masud,² and Nirupam Aich²

¹Department of Civil Engineering, Valparaiso University, Valparaiso, IN ²Department of Civil, Structural and Environmental Engineering, University at Buffalo, SUNY, Buffalo, NY 14260

Background

 Graphene, a two dimensional nanomaterial, emerged as a highly efficient adsorbent for removing contaminants from water and wastewater

- Graphene needs to be assembled into architecturally controllable monolithic structures to:
 - Incorporate into functional water treatment devices
 - Resist release of graphene into treated water

Objective

- Utilize bio-inspired polymer (polydopamine) modified graphene to synthesize monolithic aerogels with controllable architecture using 3D printed mold
- Characterize physiochemical properties of the synthesized graphene oxide-polydopamine (GO-PDA) aerogel
- Evaluate the removal capacity for a range of contaminants

Method

University at Buffalo The State University of New York

Lead (Pb (II))

Removal Capacity													Removal Kinetics								
Ι		 Removal Percentage Removal Capacity 						((b /t 55	60 - 55 -			т <u>т</u>				Rem	oval (Capaci	ty	
)	O			0	<u> </u>		- 60 - - 50) b	Capacity (mg/g)	50 - 45 -	رئ o		D								
							- 40	acity	oacit	40 - 35 -											
							- - 30	Cape		30 - 25 -										-	
							- 20	val	Removal	20 - 15 -										-	
1							- 10 -	Remo	Rem	10 - 5 -										-	
5	10	1	5	20	25	3	- <mark>0</mark> 0	Ľ.		0 - C)	10	2()	30	40	50	60	70	80	
ilibr	rium (Con						Time (hour)													
	Hi	gh	es	t Re	emo	ova		Ca	pa		ty	51	. 6	57	m	g/g	J				

Conclusion

- 3D printed molds can be utilized to synthesize graphene based aerogel with architectural flexibility
- Polydopamine can provide structural integrity to the freeze casted graphene based aerogels
- Synthesized GO-PDA aerogel exhibited high and fast contaminant (dyes and heavy metals) removal

Future Work

- 3D print molds with optimum geometry to enable better performance of the aerogels
- Hybridize the aerogel with metallic nanoparticles with the same synthesis route to enable contaminant removal with other reactive mechanism
- 3D print the graphene based ink directly to come up with mold-free synthesis route

References

- L. Qiu, J. Z. Liu, S. L. Chang, Y. Wu, and D. Li, Nature Communications, 2012
- Y. Lin, F. Liu, G. Casano, R. Bhavsar, I. A. Kinloch, and B. Derby, Advanced Materials, 2016

Acknowledgements

- Thank you to Dr. Atkinson's and Dr. Dai's lab groups for their assistance. Special thank you to Novin Mehrabi, Tashfia Mohona, Anika Tabassum, Mourin Jarin, and David Huang.
- This material is based upon work supported by the National Science Foundation under grant(s) no. 1852243 and/or 1559989