Synthesis and Characterization of Graphene oxide Polydopamine Aerogels for Contaminant Removal in Water

Dao Sysouvanh, 1 Arvid Masud, 2 and Nirupam Aich 2

1 Department of Civil Engineering, Valparaiso University, Valparaiso, IN
2 Department of Civil, Structural and Environmental Engineering, University at Buffalo, SUNY, Buffalo, NY 14260

Background

- Graphene, a two dimensional nanomaterial, emerged as a highly efficient adsorbent for removing contaminants from water and wastewater
- Graphene needs to be assembled into architecturally controllable monolithic structures to:
 - Incorporate into functional water treatment devices
 - Resist release of graphene into treated water

Objective

- Utilize bio-inspired polymer (polydopamine) modified graphene to synthesize monolithic aerogels with controllable architecture using 3D printed mold
- Characterize physiochemical properties of the synthesized graphene oxide-polydopamine (GO-PDA) aerogel
- Evaluate the removal capacity for a range of contaminants

Method

- Freeze casting with 3D printed molds
 - GO-PDA Ink
 - 3D printed molds
- PDA helps to provide structural integrity to the aerogel

Contaminant Removal

- Dye Removal: Methylene Blue (MB) - Cationic Dye
 - Removal Capacity
 - Removal Kinetics
 - Highest Removal Capacity 57.29 mg/g
- Heavy Metal Removal: Hexavalent Chromium (Cr (VI))
 - Removal Capacity
 - Removal Kinetics
 - Highest Removal Capacity 33.13 mg/g

Characterization

- Scanning Electron Microscope Image
 - Graphene Oxide
 - Graphene Polymer Aerogel
 - More porous network in graphene polymer aerogel
- X-Ray Diffraction Spectroscopy
- Raman Spectroscopy
 - Confirms chemical bond between graphene and PDA
- Confirms chemical bond between graphene and PDA

Evans Blue (EB) - Anionic Dye
- Removal Capacity
- Removal Kinetics
- Highest Removal Capacity 40.96 mg/g

Recycling of Aerogel for MB Removal
- Desorption: Ethanol (pH 2) solution for 24 hr
- Recycling and reuse experiment for GO-PDA Aerogel with initial MB concentration of 25 mg/L
- High recycling performance up to 3 cycles

Heavy Metal Removal:
- Hexavalent Chromium (Cr (VI))
- Removal Capacity
- Removal Kinetics
- Highest Removal Capacity 33.13 mg/g

Future Work

- 3D printed molds can be utilized to synthesize graphene based aerogel with architectural flexibility
- Polydopamine can provide structural integrity to the freeze casted graphene based aerogels
- Synthesized GO-PDA aerogel exhibited high and fast contaminant (dyes and heavy metals) removal

References

Acknowledgements

Thank you to Dr. Atkinson’s and Dr. Dai’s lab groups for their assistance. Special thank you to Novin Mehrabi, Tashfia Mohona, Anika Tabassum, Mourin Jarin, and David Huang.