April 1986

Emergence and Adult Biology of *Agrilus Difficilis* (Coleoptera: Buprestidae), a Pest of Honeylocust, *Gleditsia Triacanthos*

Rodney C. Akers
BASF Wyandotte Corporations

Daniel A. Herms
The Dow Gardens

David G. Nielsen
Ohio State University

Follow this and additional works at: http://scholar.valpo.edu/tgle

Part of the [Entomology Commons](http://scholar.valpo.edu/tgle)

Recommended Citation

EMERGENCE AND ADULT BIOLOGY OF AGRILUS DIFFICILIS
(COLEOPTERA: BUPRESTIDAE), A PEST OF HONEYLOCUST,
GLEDITSIA TRIACANTHOS

Rodney C. Akers,2 Daniel A. Herms,3 and David G. Nielsen4

ABSTRACT

Emergence and adult biology of Agrilus difficilis were examined in relation to its host Gleditsia triacanthos. Emergence began as early as 5 June in 1982 and completed as late as 22 July in 1983. Females lived significantly longer, 48 days, than males, 29 days. Average fecundity was one egg per day during a 36-day oviposition period.

Honeylocust, Gleditsia triacanthos L., is endemic to the eastern United States and has been widely used as a landscape tree since the 1950’s after thornless and fruitless cultivars were developed (Wyman 1965). Once considered pest free (Webster and St. George 1947), honeylocust now has several serious insect pests, including mimosa webworm, Homadaula anisocentra Meyrick (Webster and St. George 1947), a spider mite, Eotetranychus multidigituli (Ewing) (English and Snetsinger 1957), the pod gall midge, Dasineura gleditschiae (Osten Sacken) (Neiswander 1959), and the honeylocust plant bug, Diaphnocoris chlorionis (Say) (Wheeler and Henry 1976).

Three wood-boring Agrilus beetles (Coleoptera: Buprestidae) are known to colonize honeylocust: A. fallax Say, A. egeniformis Champlain and Knull, and A. difficilis Gory (Hespenheide 1969, 1976). Only A. difficilis has been recognized as a pest (Schuder 1958, Westcott 1973, Pirone 1978, Wilson et al. 1982). Larval feeding scars the cambium and restricts translocation of nutrients and water. Schuder (1958) reported that exudation of large quantities of gum around infested nodes is commonly the first symptom of attack. Drought-weakened trees have been reported to be most susceptible to borer colonization (Westcott 1973).

Information about seasonal emergence and adult biology of A. difficilis is limited. In Indiana, adult emergence has been reported in June (Schuder 1958). If A. difficilis is similar to other buprestids, emergence varies with local temperature (Dunbar and Stephens 1974, Akers and Nielsen 1984). This study was conducted to investigate emergence and adult biology of A. difficilis in northeastern Ohio.

MATERIALS AND METHODS

On 2 June 1982, four dying ‘Ruby lace’ honeylocust trees, 1.9 cm dia. 1 m above ground, were felled in the Wooster vicinity and placed in a laboratory at the Ohio State

1Salaries and research support provided by State and Federal funds appropriated to the Ohio Agricultural Research and Development Center, The Ohio State University.
2BASF Wyandotte Corp., 103 BASF Road, Greenville, MS 37801.
3The Dow Gardens, 1018 W. Main Street, Midland, MI 48640.
4Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691.
Fig. 1. Weekly adult emergence of *Agrilus difficilis* from honeylocust near Wooster, Ohio in 1982 and 1983.

University, Ohio Agricultural Research and Development Center (OARDC), Wooster. Trees were inspected daily for *A. difficilis* emergence; new holes were marked with a wax pencil.

In 1983, emergence and adult biology of *A. difficilis* were investigated. Two ‘Skyline’ honeylocust (32.8 cm dbh, 11.1 m in height and 25.8 cm dbh, 11.3 m in height) exhibiting dieback were felled 9 May and 1 June, respectively, at the OARDC and placed in an insectary. Adult emergence was monitored as in 1982. Newly emerged, unmated *A. difficilis* beetles were collected daily and separated by sex. Influence of adult host on reproductive biology was determined by caging pairs of 1- to 2-day-old virgin beetles on attached leaves of ‘Moraine’ or ‘Skyline’ honeylocust. Three beetle pairs were caged on each of four trees/cultivar (12 pairs/cultivar). Cages were made of 19.2 cm³ transparent plastic petri dishes with tops and bottoms partially replaced with nylon mesh to provide ventilation. All cages were positioned on the north side of the tree to minimize heat build-up within cages. Cages were moved to fresh foliage at least every other day when they were inspected for eggs and dead beetles. When eggs were found, beetles were moved to a new cage. Cages with eggs were positioned in the interior of the tree canopy and examined daily for egg hatch.

In 1983, adult longevity, length of the maturation feeding period, fecundity, incubation period, and egg viability were compared between the two cultivars using Student’s *t*-Test. Each beetle pair was considered an experimental unit.

RESULTS AND DISCUSSION

Emergence. *A. difficilis* adults began emerging from ‘Rubylace’ 5 June; peak emergence occurred 24 June, with last emergence on 28 June in 1982. In 1983, emergence began 11 June, peaked 28 June, with last emergence on 22 July (Fig. 1). The overall emergence period was 18 days longer in 1983 than 1982. In 1982, all beetles emerged from small-diameter stems of ‘Rubylace’ honeylocust. The small diameter of the infested wood may have resulted in all larvae and pupae being exposed to similar temperatures, thereby synchronizing development and reducing the adult emergence period. In 1983,
emergence from relatively large 'Skyline' honeylocust was monitored. Nearly all beetles
emerged from branches larger than 1.5 cm in diameter. A longer emergence period would
be expected from larger diameter wood, as reported for carpenter worm, *Prionoxystus
robiniae* Peck (Solomon and Neel 1972).

Adult Biology. In 1983, reproductive biology did not vary with host (Student's *t*-Test,
P ≤ 0.05), so data for all beetles were pooled and expressed as X ± S.D. Females lived
significantly longer (48 ± 35 days) than males (29 ± 20 days) (*P* = 0.09). The maturation
feeding period was 18 ± 7 days; females averaged 1 ± 1 egg per day during a
36 ± 32 day oviposition period. Eighty-five percent of all females oviposited. Incubation averaged 15 ± 3 days; 30 ± 22% of eggs hatched.

To our knowledge, this is the first report on *A. difficilis* biology, although it is
recognized as a pest of honeylocust (Schuder 1958, Westcott 1973, Pirone 1978, Wilson
et al. 1982). Beetles lived twice as long and were twice as fecund as the closely related
bronze birch borer, *Agrilus anxius* Gory (Akers 1985). However, *difficilis* egg hatch was
only half that of *anxius*.

Detection of *A. difficilis* as a casual agent in honeylocust decline may be difficult, since
emergence holes and raised areas of bark associated with subcortical larval galleries are
cryptic. Careful inspection is required to detect these symptoms of borer attack on
honeylocust.

A. difficilis colonizes large and small trees successfully. Its apparent preference for
stressed trees would indicate that it can be expected to be more common in the landscape
than in nurseries. However, since it colonizes even small trees, producers of honeylocust
within the range of this beetle should be vigilant for its presence in unirrigated trees during
periods of summer drought when oviposition occurs.

It is not known whether *Agrilus* beetles oviposit selectively only on trees of low vitality
or on all host trees they encounter. The former scenario is more likely, since fecundity and
egg hatchability are low. Further investigations of *A. difficilis* reproductive behavior and
biology are needed before effective management programs can be prescribed for hon­
neylocust.

ACKNOWLEDGMENT

We thank Dr. G. H. Nelson, College of Osteopathic Medicine of the Pacific, Pomona,
CA, for identifying *A. difficilis*.

LITERATURE CITED

in Ohio (Coleoptera: Buprestidae). Ph.D. dissert., Ohio State Univ., Columbus.
Akers, R. C. and D. G. Nielsen. 1984. Predicting *Agrilus anxius* Gory (Coleoptera:
Buprestidae) adult emergence by heat unit accumulation. J. Econ. Entomol. 77:1459–1463.
conditions, processing, and insecticides on its survival in oak logs. Ibid. 67:427–429.
English, L. L. and R. Snetsinger. 1957. The biology and control of *Eotetranychus
multidigituli* (Ewing) a spider mite of honeylocust. Ibid. 50:784–788.
Hespenheide, H. A. 1969. Larval feeding sites of species of *Agrilus* (Coleoptera) using
a common host plant. Oikos. 20:558–561.
———. 1976. Patterns in the use of single plant hosts by wood-boring beetles. Ibid.
Neiswander, R. B. 1959. Unusual pests of woody ornamentals. Ohio Agric. Res. and
NY. 566 pp.
Solomon, J. D. and W. W. Neel. 1972. Emergence behavior and rhythms in the carpenter
Webster, H. V. and R. A. St. George. 1947. Life history and control of the webworm:
689 pp.
coris chlorionis, and other mirids associated with ornamental honeylocust. Ann.