April 1986

Emergence and Adult Biology of *Agrilus Difficilis* (Coleoptera: Buprestidae), a Pest of Honeylocust, *Gleditsia Triacanthos*

Rodney C. Akers
BASF Wyandotte Corporations

Daniel A. Herms
The Dow Gardens

David G. Nielsen
Ohio State University

Follow this and additional works at: https://scholar.valpo.edu/tgle

Part of the [Entomology Commons](https://scholar.valpo.edu/tgle)

Recommended Citation

Available at: https://scholar.valpo.edu/tgle/vol19/iss1/4
EMERGENCE AND ADULT BIOLOGY OF AGRILUS DIFFICILIS (COLEOPTERA: BUPRESTIDAE), A PEST OF HONEYLOCUST, GLEDITSIA TRIACANTHOS

Rodney C. Akers,2 Daniel A. Herms,3 and David G. Nielsen4

ABSTRACT

Emergence and adult biology of Agrilus difficilis were examined in relation to its host Gleditsia triacanthos. Emergence began as early as 5 June in 1982 and completed as late as 22 July in 1983. Females lived significantly longer, 48 days, than males, 29 days. Average fecundity was one egg per day during a 36-day oviposition period.

Honeylocust, Gleditsia triacanthos L., is endemic to the eastern United States and has been widely used as a landscape tree since the 1950's after thornless and fruitless cultivars were developed (Wyman 1965). Once considered pest free (Webster and St. George 1947), honeylocust now has several serious insect pests, including mimosa webworm, Homadaula anisocentra Meyrick (Webster and St. George 1947), a spider mite, Eotetranychus multidigituli (Ewing) (English and Snetsinger 1957), the pod gall midge, Dasineura gleditschiae (Osten Sacken) (Neiswander 1959), and the honeylocust plant bug, Diaphnocoris chlorionis (Say) (Wheeler and Henry 1976).

Three wood-boring Agrilus beetles (Coleoptera: Buprestidae) are known to colonize honeylocust: A. fallax Say, A. egeniformis Champlain and Knoll, and A. difficilis Gory (Hespenheide 1969, 1976). Only A. difficilis has been recognized as a pest (Schuder 1958, Westcott 1973, Pirone 1978, Wilson et al. 1982). Larval feeding scars the cambium and restricts translocation of nutrients and water. Schuder (1958) reported that exudation of large quantities of gum around infested nodes is commonly the first symptom of attack. Drought-weakened trees have been reported to be most susceptible to borer colonization (Westcott 1973).

Information about seasonal emergence and adult biology of A. difficilis is limited. In Indiana, adult emergence has been reported in June (Schuder 1958). If A. difficilis is similar to other buprestids, emergence varies with local temperature (Dunbar and Stephens 1974, Akers and Nielsen 1984). This study was conducted to investigate emergence and adult biology of A. difficilis in northeastern Ohio.

MATERIALS AND METHODS

On 2 June 1982, four dying 'Ruby lace' honeylocust trees, 1.9 cm dia. 1 m above ground, were felled in the Wooster vicinity and placed in a laboratory at the Ohio State...
Fig. 1. Weekly adult emergence of *Agrilus difficilis* from honeylocust near Wooster, Ohio in 1982 and 1983.
emergence from relatively large ‘Skyline’ honeylocust was monitored. Nearly all beetles emerged from branches larger than 1.5 cm in diameter. A longer emergence period would be expected from larger diameter wood, as reported for carpenter worm, Prionoxystus robiniae Peck (Solomon and Neel 1972).

Adult Biology. In 1983, reproductive biology did not vary with host (Student’s t-Test, \(P \leq 0.05 \)), so data for all beetles were pooled and expressed as \(\bar{X} \pm S.D. \) Females lived significantly longer (48 ± 35 days) than males (29 ± 20 days) \((P = 0.09) \). The maturation feeding period was 18 ± 7 days; females averaged 1 ± 1 egg per day during a 36 ± 32 day oviposition period. Eighty-five percent of all females oviposited. Incubation averaged 15 ± 3 days; 30 ± 22% of eggs hatched.

To our knowledge, this is the first report on \textit{A. difficilis} biology, although it is recognized as a pest of honeylocust (Schuder 1958, Westcott 1973, Pirone 1978, Wilson et al. 1982). Beetles lived twice as long and were twice as fecund as the closely related bronze birch borer, \textit{Agrilus anxius} Gory (Akers 1985). However, \textit{difficilis} egg hatch was only half that of \textit{anxius}.

Detection of \textit{A. difficilis} as a casual agent in honeylocust decline may be difficult, since emergence holes and raised areas of bark associated with subcortical larval galleries are cryptic. Careful inspection is required to detect these symptoms of borer attack on honeylocust.

\textit{A. difficilis} colonizes large and small trees successfully. Its apparent preference for stressed trees would indicate that it can be expected to be more common in the landscape than in nurseries. However, since it colonizes even small trees, producers of honeylocust within the range of this beetle should be vigilant for its presence in unirrigated trees during periods of summer drought when oviposition occurs.

It is not known whether \textit{Agrilus} beetles oviposit selectively only on trees of low vitality or on all host trees they encounter. The former scenario is more likely, since fecundity and egg hatchability are low. Further investigations of \textit{A. difficilis} reproductive behavior and biology are needed before effective management programs can be prescribed for honeylocust.

ACKNOWLEDGMENT

We thank Dr. G. H. Nelson, College of Osteopathic Medicine of the Pacific, Pomona, CA, for identifying \textit{A. difficilis}.

LITERATURE CITED

Solomon, J. D. and W. W. Neel. 1972. Emergence behavior and rhythms in the carpenter
Webster, H. V. and R. A. St. George. 1947. Life history and control of the webworm:
689 pp.
coris chlorionis, and other mirids associated with ornamental honeylocust. Ann.