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ABSTRACT    

Ovarian cancer remains the most lethal gynecological malignancy due to 

challenges in early detection stemming from a lack of reliable 

biomarkers. Despite this, various laboratory tests are commonly 

employed in clinical practice, some showing diagnostic and prognostic 

promise for ovarian cancer. This review aims to synthesize current 

literature to delineate the role of artificial intelligence (AI) in both the 

diagnosis—from laboratory tests to imaging—and treatment of ovarian 

cancers. Thus, the epidemiology, risk factors, pathology, screening 

methods, as well as the integration of AI in the diagnosis of ovarian 

cancer (AI based on both blood biomarkers and imaging-based ovarian 

cancer detection) are presented. AI and biomarkers show considerable 

potential in improving ovarian cancer management, but ongoing research 

efforts are necessary to refine these technologies and integrate them 

effectively into clinical practice. This approach aims to enhance 

diagnostic accuracy, predict patient outcomes, and ultimately improve 

treatment strategies for ovarian cancer patients. 
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Introduction  

Epithelial ovarian cancer originates from the malignant 

transformation of the ovarian surface epithelium, which is 

continuous with the peritoneal epithelium [1]. It ranks as the 

sixth most prevalent cancer among women worldwide [2]. 

Diagnosis frequently occurs at an advanced stage, leading to 

poor prognoses with existing treatments. However, 

advancements in chemotherapy and an enhanced 

understanding of genetic risk factors and molecular 

pathogenesis offer new treatment avenues. This overview 

explores the clinical and molecular features of epithelial 

ovarian cancer and discusses potential future advancements. 

The highest incidence rates of epithelial ovarian cancer 

are observed in Europe, the USA, and Israel, with lower 

rates in Japan and developing countries [2]. The median 

age at diagnosis is typically 60 years, and the average 

lifetime risk for women in developed nations approximates 

one in 70 [2]. A notable risk factor is a strong family history 

of ovarian or breast cancer, though detectable genetic 

predispositions, such as germline BRCA1/BRCA2 

mutations, are present in only 10-15% of cases [3,4]. 

Women with a BRCA1 mutation face a 39-46% risk of 

developing epithelial ovarian cancer, whereas those with 

BRCA2 mutations have a 12-20% risk. Other risk factors 

include nulliparity, early menarche, late menopause, and 
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advancing age. Conversely, factors like oral contraceptive 

use, pregnancy, lactation, and tubal ligation are associated 

with reduced risks [5,6]. 

Research indicates a declining incidence of epithelial 

ovarian cancer in developed nations across various age 

groups and ethnicities since 1985 [7-9]. Median survival in 

advanced-stage cases has also improved over the past three 

decades. The shift in incidence between Western and 

Southern/Eastern Europe and the USA may be linked to 

increased oral contraceptive use and reduced fecundity, 

respectively [10]. 

Several interrelated theories aim to explain these 

epidemiological observations [11]. The incessant ovulation 

hypothesis posits that repeated injury to the ovarian surface 

epithelium during post-ovulatory repair, coupled with 

subsequent cell proliferation, results in the accumulation of 

genomic abnormalities. This process gives rise to ovarian 

epithelial inclusion cysts, potentially increasing 

carcinogenic risk by trapping cells in an environment 

characterized by abnormal autocrine or paracrine 

stimulation by growth factors such as hormones, 

phospholipids, and VEGF. These factors activate 

intracellular pathways like kinase signaling. The 

gonadotropin theory suggests that surges in pituitary 

gonadotropins during ovulation and elevated concentrations 

post-menopause stimulate surface epithelial cells, fostering 

genetic changes and carcinogenesis. Lastly, inflammation 

and alterations in redox potential during ovulation and 

epithelial repair may explain the heightened risk of 

epithelial ovarian cancer associated with exposures like talc 

or asbestos, endometriosis, and pelvic inflammatory disease 

[12]. Regardless of the initiating stimulus, defective 

BRCA1 and BRCA2 function diminishes genomic damage 

repair, escalating cancer risk. Given the inflammatory-like 

context of ovulation, COX2-dependent chemoprevention 

strategies warrant exploration [13]. 

Discussions 

Epithelial ovarian cancers are categorized based on 

histopathological grade (1–3) and subtype, with serous 

being the most common, followed by mucinous, 

endometrioid, and less frequently, clear cell, transitional, 

squamous, mixed, and undifferentiated subtypes. 

Additionally, cancers resembling epithelial ovarian 

cancers morphologically and clinically may arise from the 

fallopian tubes or primary peritoneum, owing to their 

shared embryonic precursor with ovarian surface 

epithelium. Evidence suggests that some ovarian cancers 

may originate specifically from the distal fallopian tubes 

(fimbria) [14]. Studies involving over 8000 cases have 

indicated that mucinous and endometrioid carcinomas 

generally carry a favorable prognosis, whereas serous 

carcinomas have a less favorable outlook, and 

undifferentiated carcinoma is considered the most 

aggressive subtype [15]. Clear-cell carcinoma prognosis 

findings have been inconsistent. Histopathological grade 

consistently correlates with prognosis [15]. 

Causes and Pathogenesis 

Epithelial ovarian cancer subtypes exhibit distinct 

molecular aberrations and transcriptional profiles, despite 

sharing morphological characteristics similar to 

specialized epithelia derived from Müllerian ducts. 

Research suggests that these subtypes may originate from 

a single precursor cell of the surface epithelium, with 

differentiation guided by embryonic pathways involving 

HOX genes [16-18]. Normally absent in ovarian surface 

epithelium, HOX gene expression in tumorigenic mice 

transforms these cells into various Müllerian lineage 

tumors resembling serous, endometrioid, and mucinous 

ovarian tumors, respectively [16-18]. HOXA7 influences 

differentiation extent and tumor grade. Prolonged exposure 

to sex steroids during the menstrual cycle may 

inappropriately activate HOX genes in adult women, 

potentially within the context of epithelial inclusion cysts 

and excessive autocrine or paracrine stimulation, leading 

to proliferation and genomic instability. 

Genomic mutations play a pivotal role in the 

pathogenesis of many cancers, including epithelial ovarian 

cancer. High-prevalence somatic mutations (occurring in 

over 5% of cases) are identified in a few genes in a subtype- 

and grade-specific manner, suggesting their involvement in 

ovarian carcinogenesis. These genes include TP53, 

CTNNB1, PTEN (all inactivated), and KRAS, PIK3CA, 

AKT1 (all activated) [19-21]. Epithelial ovarian cancers 

associated with hereditary BRCA1 and BRCA2 mutations 

often present at a younger age and are predominantly high-

grade serous tumors with P53 dysfunction [22]. 

Like many solid tumors, epithelial ovarian cancers 

frequently exhibit high chromosomal instability levels 

(gene copy number amplifications and deletions), with 

total and regional instability correlating with tumor grade 

and patient outcomes [23]. While these unstable regions 

often encompass numerous genes, only a few are 

considered critical cancer process drivers, serving as vital 

markers and potential therapeutic targets. As protein 

function inhibition is typically more feasible than 

restoration, current research focuses on identifying 

potential therapy targets within chromosomal gains 

(amplicons). Some of these genes are currently the subject 

of novel agent testing in preclinical or early clinical trials. 

Additionally, rearrangements, epigenetic changes, and 

imprinting influence cellular function and highlight 

potential markers and therapeutic targets [24]. 

A model of ovarian carcinogenesis categorizes 

epithelial ovarian cancers into two types: type I and type II 

tumors, representing two primary pathways of 

tumorigenesis. Type I tumors develop gradually from 

borderline tumors and encompass low-grade serous 
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carcinomas, mucinous, endometrioid, and clear-cell 

carcinomas. Conversely, type II tumors arise sporadically 

and encompass high-grade serous carcinoma, malignant 

mixed mesodermal tumors, and undifferentiated 

carcinomas. Type II tumors are characterized by frequent 

TP53 mutations, genomic instability, and sometimes 

BRCA mutations. This model elucidates the relationship 

between borderline tumors and invasive carcinoma, 

providing a morphological and molecular framework for 

studying epithelial ovarian cancer pathogenesis [16]. 

Screening 

The potential for early detection to significantly improve 

survival hinges on whether metastatic disease arises from 

the progression of clinically detectable early lesions and if 

cancers remain localized long enough for cost-effective 

screening [25]. Given the prevalence of epithelial ovarian 

cancer, early detection strategies require high sensitivity 

(over 75%) and exceptional specificity (99.6%) to achieve 

a positive predictive value of 10% or more. Serum CA125 

concentration alone lacks the necessary sensitivity and 

specificity for effective screening. Combining CA125 

measurement with transvaginal ultrasonography (TVS) or 

monitoring CA125 levels over time can enhance specificity. 

Risk assessment tools such as BRCAPRO, integrating a 

patient's personal and family history, can estimate the 

likelihood of identifying germline BRCA1 or BRCA2 

mutations [26,27]. 

Women with germline BRCA1 or BRCA2 mutations, 

known to face significantly increased ovarian cancer risks, are 

advised periodic screening with CA125 and TVS beginning 

between ages 30 and 35, or 5–10 years before the youngest 

first ovarian cancer diagnosis in their families [28,29]. High-

risk women confirmed to have a BRCA1 or BRCA2 mutation, 

older than 40, or finished with childbearing are recommended 

to reduce their ovarian cancer (and breast cancer) risk  

through bilateral salpingo-oophorectomy (BSO) [28-30]. 

Nonetheless, such patients may continue to face persistent 

primary peritoneal carcinoma risks. 

AI in Diagnosis 

AI Based on Blood Biomarkers 

Enhancing long-term outcomes for patients with 

epithelial ovarian cancer (EOC) requires identifying 

reliable stratification indicators that characterize the 

disease and predict outcomes before initial treatment [31]. 

Traditionally, clinical factors such as age and tumor grade 

have been used for prognosis assessment, but their 

predictive value is limited [32,33]. Recent studies have 

highlighted circulating tumor cells (CTCs) in the blood as 

potential prognostic markers for overall survival in various 

cancers, including ovarian cancer, although findings 

remain inconsistent [34,35]. 

In the realm of precision medicine, there is a growing 

need for robust risk stratification models specifically 

tailored for ovarian cancer. Oncologists are increasingly 

turning to machine learning to construct predictive models 

that enhance clinical decision-making [36]. Using advanced 

artificial intelligence (AI) technology, computers can 

identify patterns from extensive historical databases [37]. 

A study conducted in Shanghai [38] established a 

significant correlation between circulating tumor cell count 

and factors such as FIGO stage, tumor size, and CA-125 

levels. Interestingly, there were no significant differences 

in CTC counts concerning age, BMI index, tumor size, 

pathological grade, histological type, neutrophil count, 

lymphocyte count, platelet count, albumin level, CA-199 

level, AFP level, CEA level, or HE4 level. Kawakami et al. 

[39] introduced an ovarian cancer-specific predictive 

framework for clinical staging using machine learning 

methods based on multiple biomarkers, excluding CTCs, 

achieving an AUC of 0.760. However, the relatively lower 

significance could partly be attributed to the limited sample 

size of 156 patients, highlighting the necessity for future 

studies with larger datasets to refine models. 

Previous research has demonstrated the prognostic 

significance of blood biomarkers, including systemic 

inflammatory response indicators, in EOC patients. A 

recent meta-analysis involving 2,919 patients highlighted a 

significant association between elevated neutrophil-to-

lymphocyte ratio and disease progression as well as 

survival in EOC patients [40]. Inflammatory markers may 

contribute to tumor progression by producing cytokines 

(such as VEGF, interleukin, and tumor necrosis factor-α), 

which play critical roles in the tumor microenvironment 

[41]. Additionally, coagulation factors can promote cancer 

proliferation and angiogenesis through interactions with 

VEGF and fibroblast growth factor-2 (FGF-2) [42]. 

Studies have reported that elevated preoperative plasma 

fibrinogen, CRP, and albumin levels predict unfavorable 

EOC prognosis [43,44]. 

Apart from inflammatory and coagulation-related 

biomarkers, a review from Shanghai [38] identified CTC 

count as an independent prognostic factor for ovarian 

cancer, with an AUC value of 0.841 (95% CI, 0.802–

0.880). Among "liquid biopsy" alternatives for predicting 

solid tumors, CTCs have shown significant potential in 

prostate cancer, breast cancer, and hepatocellular 

carcinoma [45-47]. However, the relationship between 

CTC characteristics and prognosis in EOC remains 

controversial [48]. Poveda et al. [49] concluded that 

elevated CTCs detected using the CellSearch system were 

an independent risk factor for ovarian cancer prognosis. 

Recent studies indicated that CTCs can spread to distant 

sites through epithelial-mesenchymal transition (EMT), 

allowing them to change phenotype and penetrate blood 

vessels [50]. The Shanghai study [38] categorized CTCs 

into three subtypes—epithelial, epithelial/mesenchymal 

hybrids, and mesenchymal—using the advanced CanPatrol 

CTC-enrichment technique. They demonstrated that the 
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percentage of mesenchymal CTCs (M-CTCs) had 

significant predictive value for ovarian cancer prognosis, 

with an AUC of 0.859 (95% CI, 0.818–0.903). Consistent 

with these findings, previous research also indicated the 

prognostic value of both M-CTC percentage (AUC 0.74; 

95% CI 0.64–0.84) and CTCs (AUC 0.75; 95% CI 0.66–

0.84) in hepatocellular carcinoma [51]. In ovarian cancer, 

researchers have shown that tumor cells undergoing EMT 

exhibit cancer stem cell (CSC) characteristics and can 

promote tumor growth in vivo [52], which may partly 

explain the critical association between high M-CTC 

percentages and poor prognosis. 

However, there were limitations to this study. The 

prospective study had a relatively small sample size of 156 

patients from a single institution, potentially causing 

selection bias and limiting the precision of the results. 

Additionally, detection efficiency might be biased since the 

CanPatrol system is a filtration-based system, allowing 

small CTCs to pass through the barrier easily. 

AI in Image-Based Ovarian Cancer Identification 

Accurate preoperative differentiation between benign 

and malignant ovarian masses is crucial for determining 

appropriate treatment strategies and enhancing 

postoperative quality of life [53]. Imaging is a vital tool in 

medical science, frequently used in clinical practice to aid 

in diagnosis, staging, and treatment decisions [54,55]. 

Ultrasound (US) is commonly employed to detect ovarian 

masses and distinguish between benign and malignant 

lesions [56]. Magnetic resonance imaging (MRI) is 

essential for characterizing ovarian tumors due to its high 

soft-tissue resolution and is recommended for assessing the 

need for surgery for an adnexal mass [57]. Computed 

tomography (CT) can evaluate the extent of hematogenous, 

peritoneal, and lymphatic spread of ovarian cancer, 

assessing areas such as the liver, paraaortic region, 

omentum, and mesentery [58]. Although PET CT's utility 

in diagnosing ovarian tumors is noted, its cost-

effectiveness remains unproven. Currently, US and MRI 

are the most widely used imaging modalities for 

diagnosing and characterizing ovarian tumors [59]. 

Traditionally, the diagnosis of ovarian cancer has relied 

on the subjective assessment of radiologists or 

gynecologists, who use their clinical experience to evaluate 

imaging features and examine ovarian tumors with high 

heterogeneity [60,61]. The complexity arising from 

inadequate or absent radiology in resource-poor regions, 

coupled with the variability in human rater expertise, 

makes precise and timely diagnosis from medical imaging 

challenging [62,63]. 

Advancements in artificial intelligence (AI) offer the 

potential to bridge the gap between the high demand for 

diagnostic imaging and the limited healthcare resources 

[64]. Radiomics, a promising research area, involves a 

'data-driven' approach to extracting large sets of 

quantitative signatures from radiological images [65]. 

These data can then be analyzed using conventional 

biostatistics or AI methods [66]. Through sophisticated 

image processing techniques, all medical images are 

converted into mineable high-throughput image features, 

which can be used to correlate these features with 

pathology diagnoses or treatment responses [67]. 

Radiomics models and AI algorithms have shown promise 

in integrating medical images for the detection of ovarian 

cancer (OC) [68]. For example, Aramendía-Vidaurreta et 

al. [69] reported that a machine learning (ML) algorithm 

based on US images achieved a diagnostic accuracy of 

98% in 145 patients. Furthermore, a deep learning (DL) 

model was used to automatically discriminate between 

benign and malignant ovarian tumor images, achieving an 

accuracy of 87.6% [70]. Researchers continue to explore 

various strategies, including improving image quality, 

expanding sample sizes, and optimizing algorithms, to 

further enhance diagnostic accuracy [71]. 

In a study conducted in Shenyang, China [72], AI 

algorithms demonstrated high diagnostic accuracy for 

ovarian cancer (OC) using medical imaging. The sub-

analysis provided insights into the performance of different 

AI algorithms and imaging modalities: 

• Machine Learning (ML) vs. Deep Learning (DL): ML 

algorithms had a pooled sensitivity (SE) of 89% and 

specificity (SP) of 88%, meaning they correctly identified 

89% of true positives and correctly ruled out 88% of true 

negatives. DL algorithms had slightly lower SE at 88% and 

SP at 84%. 

• Imaging Modalities: 

 Ultrasound (US): US studies showed high accuracy with 

an SE of 91%, SP of 87%, and an Area Under the Curve 

(AUC) of 0.95, indicating strong overall performance. 

 Magnetic Resonance Imaging (MRI): MRI studies had 

an SE of 83%, SP of 84%, and an AUC of 0.90, showing 

good but slightly lower performance compared to US. 

 Computed Tomography (CT): CT studies had the 

lowest performance with an SE of 75%, SP of 75%, and 

an AUC of 0.82. 

• AI vs. Human Clinicians: AI algorithms outperformed 

human clinicians, with AI showing higher SE (82% vs. 

77%), SP (86% vs. 80%), and AUC (0.91 vs. 0.85). 

• Sample Size Effect: Studies with sample sizes ≤ 300 had 

lower SE (85%) and SP (82%) compared to those with 

sample sizes > 300, which had an SE of 93% and SP of 91%. 

Larger sample sizes also had a higher AUC (0.97 vs. 0.90). 

• Publication Date: Studies published before 2020 had 

slightly higher SE (89%) and SP (89%) compared to those 

published after 2020 (SE of 88%, SP of 83%). The AUC 

was also higher for studies before 2020 (0.95 vs. 0.92). 

• Geographic Distribution: Studies conducted in Asia had 

an SE of 87% and SP of 83%, while those outside Asia had 



 

 

Artificial intelligence in ovarian cancers 

281  

higher SE (90%) and SP (89%). The AUC was higher for 

studies outside Asia (0.95 vs. 0.92). 

Despite these promising results, significant 

heterogeneity was observed among the studies. However, 

no publication bias was detected (p = 0.83). 

AI shows substantial potential in improving ovarian 

cancer (OC) diagnostics through medical imaging, often 

matching or surpassing human clinicians' performance [64]. 

Radiomics, a 'data-driven' approach for extracting large sets 

of quantitative features from radiological images [65], can 

be analyzed using conventional biostatistics or AI methods 

to correlate these features with pathology diagnoses or 

treatment responses [67]. AI and radiomics models have 

demonstrated success in detecting OC, with some achieving 

high diagnostic accuracy. For instance, a machine learning 

(ML) algorithm based on ultrasound images achieved a 

diagnostic accuracy of 98% in a study involving 145 

patients [69]. Additionally, a deep learning (DL) model 

used to differentiate between benign and malignant ovarian 

tumor images achieved an accuracy of 87.6% [70]. 

However, challenges remain. ML strategies often 

require manual extraction and selection of features, which 

is essential for predicting and correlating results. They also 

struggle with imbalanced datasets [73]. DL, while 

advantageous due to its use of various neural network 

layers enhancing computational power, is prone to 

overfitting and requires large datasets to be effective [74-

76]. The quality of AI research is critical, and the 

QUADAS-AI instrument, designed specifically for AI 

diagnostic test studies, provides a framework for assessing 

study quality and bias [77]. Many studies lack standardized 

metrics and large, diverse image databases necessary for 

training robust AI models [78]. 

International collaborations, such as The Cancer Imaging 

Archive, aim to build large, labeled datasets to address these 

issues [79-82]. These datasets must be curated to ensure 

quality and avoid unwanted variance due to differences in 

data acquisition standards and imaging protocols. 

Additionally, AI research should consider non-imaging-

based patient characteristics (cancer history, demographics, 

and genetic data) to enhance diagnostic models [83].  

Most reviewed studies were retrospective (hospital 

records) and conducted in single centers with limited data 

availability. This underscores the need for rigorous external 

validation and multicentric studies with interoperable 

standards and uniform protocols to ensure generalizability 

and reduce the risk of overestimation [83-85]. 

Key points of AI in Enhancing Ovarian Cancer (OC) 

Diagnostics and Prognostics 

Importance of Biomarkers and AI in Prognosis and 

Prediction 

Circulating Tumor Cells (CTCs): CTCs are emerging as 

potential prognostic indicators in ovarian cancer, though 

consistent findings are still being established [34,35]. 

Advanced techniques like CanPatrol allow for the 

classification of CTCs into subtypes, such as mesenchymal-

CTCs, highlighting their prognostic value [38,50]. 

Inflammatory and Coagulation Biomarkers: Markers 

such as the neutrophil-to-lymphocyte ratio and plasma 

fibrinogen levels are linked to ovarian cancer progression 

and survival outcomes [40,42]. These biomarkers reflect 

systemic inflammatory responses and their interactions 

with tumor microenvironments [41]. 

Role of AI in Medical Imaging for OC Diagnosis 

Advantages of AI: AI and radiomics models 

demonstrate high diagnostic accuracy in distinguishing 

between benign and malignant ovarian tumors using 

imaging modalities like ultrasound, MRI, and CT [69,70]. 

AI algorithms often outperform human clinicians in terms 

of sensitivity, specificity, and overall diagnostic 

performance [72]. 

Challenges and Considerations: Despite promising 

results, developing AI models faces challenges such as the 

need for large and diverse datasets, standardized metrics, 

and robust validation across different populations and 

healthcare settings [73-78]. 

Future Directions and Recommendations 

Enhanced Study Design: Future research should aim to 

improve study designs, including larger sample sizes and 

multicentric studies to validate AI models and biomarker 

findings [72,84,85]. 

Standardization and Collaboration: International 

collaborations are essential for creating high-quality 

datasets and standardized protocols in AI research, 

ensuring reproducibility and generalizability of findings 

[79-82]. 

Integration of Non-Imaging Data: Incorporating non-

imaging patient characteristics such as demographics, 

genetic data, and cancer history can further enhance the 

diagnostic accuracy and predictive capabilities of AI 

models [83]. 

Conclusions 

AI holds significant promise in revolutionizing OC 

diagnosis and prognostication through advanced imaging 

analysis and biomarker integration. However, addressing 

methodological limitations and ensuring rigorous 

validation are critical steps toward its widespread clinical 

adoption [55,86]. 
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