Design of a Magnetic Field Mapping Rover System for a Neutron Lifetime Experiment

Matthew Libersky
Valparaiso University, matthew.libersky@valpo.edu

Follow this and additional works at: https://scholar.valpo.edu/cus

Recommended Citation
https://scholar.valpo.edu/cus/413

This Poster Presentation is brought to you for free and open access by the Office of Sponsored and Undergraduate Research at ValpoScholar. It has been accepted for inclusion in Symposium on Undergraduate Research and Creative Expression (SOURCE) by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at scholar@valpo.edu.
Design of a magnetic field mapping rover system for a neutron lifetime experiment

Matthew Libersky, Mentor: Steven Clayton
Los Alamos National Laboratory

Abstract
The beta decay lifetimes of the free neutron is an important input to the Standard Model of particle physics, but values measured using different methods have exhibited substantial disagreement. An experiment using ultra-cold neutrons (UCNs) is planned at LANL to explore better methods of measuring the neutron lifetime. In this experiment, UCNs are confined in a magneto-gravitational trap formed by a curved, asymmetric Halbach array surrounded by holding-field coils. If any defects present in the Halbach array are sufficient to reduce the local field near the surface below the needed to repel the desired energy level UCNs, loss to material interaction can occur at a rate similar to the loss by beta decay. The design of a system to map the magnetic field of the trap using a rover and computer vision-based tracking system is described here.

Background
Ultracold Neutrons (UCNs)
- Neutrons with kinetic energy ~0.01 eV, on the order of the gravitational potential energy of a neutron at ±1 m in a specific environment.
- Can be easily confined by magnetic fields, gravity, and certain materials.

Neutron lifetime measurement
- Free neutrons decay to a proton, electron, and electron antineutrino with a mean lifetime around 15 min, but experiments attempting to measure this value have arrived at conflicting results.
- An experiment currently undertaken at ANL plans to explore new methods of measuring this value using UCNs.
- A Halbach array (an arrangement of permanent magnets that creates a strong magnetic field on one side of the surface) is being used to confine the UCNs in this experiment.
- Several of the ~5000 permanent magnets comprising the Halbach array have defects of various sizes. If a defect is sufficient to reduce the local field below that which is necessary to repel UCNs with energies that should be trapped, UCNs can be lost to material interactions at the rate similar to the free neutron beta decay rate, which would create a systematic shift in the lifetime measurement.

Technical description
- Some initial field mapping has already been done over small sections of the array (Fig. 1), but a solution is needed to map the field in the entire trap without removing it from the vacuum chamber (Fig. 2).
- An effective method of finding the absolute translational position and rotational orientation of the rover (and thus the Hall probe) is to triangulate the positions of several markers attached to the rover using at least two cameras and computer vision techniques.

Optical tracking
To create a field map, it is necessary to record all three components of the magnetic field, the translational position of the probe, and the rotational orientation of the probe (i.e., the Euler angles). An effective method of finding the absolute translational position and rotational orientation of the rover (and thus the Hall probe) is to triangulate the positions of several markers attached to the rover using at least two cameras and computer vision techniques. The OpenCV library has many useful functions for this task.

Results
A demonstration map was created in front of a small coil using a marker attached to a fluke-type magnetometer probe.

Fig. 1: The Halbach array used in the trap. The array is around 1 m by 1.5 m in size.

Fig. 2: Result of a magnetic field scan using a Hall array as shown above with a defect due to a chipped magnet, which can be seen in the discontinuity at 0 between 2.5 and 6 cm. This scan was performed during the construction of the array using a Hall probe mounted on an X-Y stage by collaboration of Indiana University.

Fig. 3: A cutaway rendering of the trap, including the vacuum chamber. Access to the array is through the front face of the chamber.

Fig. 4: An illustration of the system operating on the Halbach array.

Fig. 5: A pair of images captured by the stereo camera at approximately the same time, in front of the coil discussed above. The highlights on the markers are attached to the fluke magnetometer probe. The data shown above was collected using a single attached marker; these images were recorded to develop another tracking method.

Future work
- Finish constructing rover.
- Investigate other tracking methods.
- Implement simple interface to control rover, construct visualization.
- Add an outrigger arm to drag the Hall probe along the surface.

There are several components that could be added to the system to improve performance:
- An IMU (Inertial Measurement Unit) with a combination of an accelerometer and a gyroscope to interpolate between optical position measurements and provide position measurements to match the kHz-scale bandwidth of the Hall probe.
- A robotic or linear encoder could be used along with the arm to measure the motion of the Hall probe along the surface and include the surface profile of the trap in maps.

Conclusion
- Design of system, construction of initial prototypes is mostly complete.
- While there are still several facets of the design yet to be investigated that could determine the feasibility of the system for its desired use, it seems reasonably possible this system could perform the intended function.
- The computer vision tracking techniques being used in this project could also be useful in other mapping applications, such as room volume scans.
- For instance, a motion-controlled fluke magnetometer could be used to map the residual magnetic field inside a shielded environment for a neutron electric dipole moment experiment under development at LANL.

References