Probabilistic Analysis of the Economic Impact of Earthquake Prediction Systems

Ruyue Yuan

Valparaiso University
Department of Mathematics and Computer Science

May 3, 2014
Probabilistic Analysis of the Economic Impact of Earthquake Prediction Systems

Ruyue Yuan

Introduction
- Background

Previous Research
- Definitions
- Paté’s Research

Improvement
- The Expected Value of Cost Per Life Saved
- Numerical Result
- Conclusion
- Future Work

Bibliography
- Acknowledgement
- Bibliography
Advantages of a Prediction System

- Save lives
- Minimize damage
- Lower cost of damage and loss
- Allow time for decision-making
- Capable of dealing with natural hazards
Disadvantages of a Prediction System

- Cause public panic
- Force large-scale evacuation
- Make possible false predictions
- Potential waste of time and resources
- Significant economic loss
Question

Are earthquake prediction systems helping?
The Richter Scale

Earthquake frequency and destructive power

The left side of the chart shows the magnitude of the earthquake and the right side represents the amount of high explosive required to produce the energy released by the earthquake. The middle of the chart shows the relative frequencies.

<table>
<thead>
<tr>
<th>Magnitude</th>
<th>Notable earthquakes</th>
<th>Energy equivalents</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Chile (1960)</td>
<td>123 trillion lb.</td>
</tr>
<tr>
<td></td>
<td>Alaska (1964)</td>
<td>1 trillion lb.</td>
</tr>
<tr>
<td></td>
<td>Japan (2011)</td>
<td>100 billion lb.</td>
</tr>
<tr>
<td>9</td>
<td>Great earthquake; near total destruction, massive loss of life</td>
<td></td>
</tr>
<tr>
<td></td>
<td>New Madrid, Mo. (1812)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>San Francisco (1906)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Major earthquake; severe economic impact, large loss of life</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Loma Prieta, Calif. (1989)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kobe, Japan (1995)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Northridge, Calif. (1994)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Strong earthquake; damage ($ billions), loss of life</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Long Island, N.Y. (1884)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Moderate earthquake; property damage</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Light earthquake; some property damage</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Minor earthquake; felt by humans</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Average tornado</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Large lightning bolt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oklahoma City bombing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moderate lightning bolt</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Hiroshima atomic bomb</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Krakatoa volcanic eruption</td>
<td></td>
</tr>
<tr>
<td></td>
<td>World’s largest nuclear test (USSR)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mount St. Helens eruption</td>
<td></td>
</tr>
</tbody>
</table>

Number of earthquakes per year (worldwide)

Source: U.S. Geological Survey
Definitions

- M_O: Observed magnitude of an earthquake
- M_P: Predicted magnitude of an earthquake
- T: Lead time, the period before an earthquake occurs
- C_P: Cost of an earthquake prediction
- C_A: Avoided cost from having an earthquake prediction
- L: Number of lives saved
Paté’s Approach

- Collect variables to model the net cost of a prediction system, M_O, M_P, T.

- Use the net cost and number of lives saved to find the cost per life saved.

- Use probabilistic method to estimate the cost per life saved.
The net cost $C = C_P - C_A$

The cost per life saved $= \frac{C}{L}$

The expected value of cost per life saved $E[X] = E\left[\frac{C}{L}\right]$
Paté’s Result

The expected value of cost per life saved is

\[E[X] = \frac{E[C]}{E[L]} = \frac{E[C_P - C_A]}{E[L]} \]
Problem Shooting

\[E[X] = E \left[\frac{C}{L} \right] \neq \frac{E[C]}{E[L]} \]

- \(C \) is not a deterministic function of \(M_O \), \(M_P \), \(T \), but a random function of \(M_O \), \(M_P \), \(T \).
Problem Shooting

\[E[X] = E \left[\frac{C}{L} \right] \neq \frac{E[C]}{E[L]} \]

- \(C \) is not a deterministic function of \(M_O, M_P, T \), but a random function of \(M_O, M_P, T \).

These two major invalid derivations lead to a much smaller expected value of cost per life saved with a prediction system.
Theorem 1.

The expected value of cost per life saved:

\[
E[X] = \sum_{T} \sum_{M_P} \sum_{M_O} \left[(\mu_P(M_O, M_P, T) - \mu_A(M_O, M_P, T)) \cdot \frac{1 - e^{-\lambda(M_O, M_P, LT)}}{\lambda(M_O, M_P, LT)} \cdot p(M_O) \cdot p(M_P|M_O) \cdot p(T|M_P) \right].
\]
Theorem 2.

The expected value of cost per life saved when the observed magnitude is greater than 8:

\[
E[X|M_O = 8+] = \sum_{T} \sum_{M_P} [\mu_P(M_P, T) - \mu_A(M_P, T)] \cdot \frac{1 - e^{-\lambda(M_P, LT)}}{\lambda(M_P, LT)} \cdot P(M_P = j | M_O = k) \cdot P(T = i | M_P = j).
\]
Numerical Example: MatLab Result

The cost per life saved in an earthquake of magnitude 8+:

- Paté’s result: approximately $1.56 million.
- Our result: approximately $2.50 million.

From this comparison, we see that both of the results are on the same scale, and our new result is significantly greater than Paté’s result.
Conclusion

- With the cost of $6.30 million for life saving without a prediction system, we conclude that prediction systems are needed, especially for large-scale earthquakes.

- The humanity factor of this research cannot be neglected. The value of lives is not only a number in the cost function, but also by itself significant.
Future Work

- Improve numerical results
- Submit to a journal
Advised by Dr. Tiffany Kolba.

Thank you for listening!
Probabilistic Analysis of the Economic Impact of Earthquake Prediction Systems

Ruyue Yuan

Introduction

Background

Previous Research

Definitions

Paté’s Research

Improvement

The Expected Value of Cost Per Life Saved

Numerical Result

Conclusion

Future Work

Bibliography

Bibliography

