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A B ST R AC T 
 

 

Non-Hodgkin’s malignant lymphomas are a heterogeneous group of 

hematological malignancies, characterized by a variety of clinical, 

morphological, histopathological, immuno-histochemical, molecular and 

evolutionary features. They represent a form of cancer that develops from 

the lymphatic tissue, as a result of the malignant transformation of B (85%) 

or T (15%) lymphocytes. Lymphomagenesis is described as a multi-stage 

process involving the mutation and proliferation of cell clones. Oxidative 

stress is defined as an imbalance of cellular redox status caused by the 

production of reactive oxygen species (ROS) and/ or by decreasing 

antioxidant systems that allows their accumulation in the cell. Small 

quantities of ROS are involved in physiological mechanisms such as cell 

growth and differentiation, cell signaling, antimicrobial defense, 

phagocytosis. Normally, cells are capable of defending themselves against 

ROS damage through various scavenger systems. On the other hand, 

excessive ROS contribute to various diseases such as carcinogenesis, 

ischemia, atherosclerosis, neurodegenerative diseases. Oxidative stress 

exerts noxious effects on the cell structures by inducing structural changes 

in membranes, lipids, proteins or DNA. The present review summarizes 

the latest findings in understanding the ROS-linked signaling pathways in 

the initiation of lymphomagenesis, disease progression, metastasis, as well 

as in the pharmacodynamics of specific treatments for this malignancy.   
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Introduction  

Non-Hodgkin’s lymphoma (NHL) is the most frequent 

hematological malignancy [1]. The American Cancer 

Society has estimated 74,200 new cases of NHL for 2019 

[2]. The incidence has doubled in the last 50 years, 

resulting from improved diagnostic techniques and access 

to medical care. Various classification systems have been 

developed, but three of them are most commonly used: the 

National Cancer Institute’s Working Formulation (IWF), 

the Revised European-American Classification of 

Lymphoid Neoplasms (REAL) and the World Health 

Organization (WHO) classification [3-5]. The WHO 

modification of the REAL classification of NHL is based 

on cell lineage and morphology. In 2016, the World Health 

Organization’s classification of lymphoid, histiocytic  

and dendritic neoplasms comprises B-line, T-line or  

Natural Killer (NK) malignancies, post-transplant 

lymphoproliferations and histiocytic and dendritic 

neoplasms, with two sub-divisions: precursor neoplasms 

and mature differentiated neoplasms [5]. Diagnostic and 

treatment methods have improved with this revised 

classification, bringing in the forefront the current 

cytogenetic and molecular biology data necessary for the 

most targeted therapeutic management. The natural history 

of these tumors shows considerable variation. From a 

clinical-evolutionary point of view, NHL are sorted into 

three classes: indolent (diffuse lymphocytic B-cell 

lymphoma, lymphoplasmacytic lymphoma, marginal zone 

lymphoma, grade I and II follicular lymphoma, Mycosis 

fungoid), aggressive (B-cell lymphomas: mantle cell 

lymphoma,  grade III follicular lymphoma, large diffuse B-

cell lymphoma, primitive mediastinal lymphoma and T-

cell lymphomas: angioimmunoblastic, angiocentric, 

peripheral T-cell, intestinal T-cell, anaplastic with large 

cells) and very aggressive (lymphoma with B/T precursors, 
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Burkitt lymphoma and other peripheral T-cell 

lymphomas). In their evolution, indolent lymphomas can 

progress to aggressive lymphomas. However, there is a 

paradox, as aggressive lymphomas have a better prognosis 

than indolent lymphomas [6,7].  

Prognosis mainly depends on individual factors (such 

as age, comorbidities), lymphoma subtype and extent of 

lymph node involvement. For a better prediction of the 

outcome and management, the International Prognostic 

Index (IPI) and its variant were developed [8,9]. In addition 

to these factors, recent studies emphasize the importance 

of cytogenetic markers in the prognosis, as well as in the 

therapeutic strategies of NHL [10]. 

Discussion 

Lymphomagenesis is a complex process resulting from 

the interactions between genetic and environmental 

factors. It involves a complex, multi-step process, 

characterized by a progressive clonal expansion of B-cells 

or T-cells and/or NK-cells. In the first stage, the 

proliferation is polyclonal under the action of certain risk 

factors (Table 1). 

 
Table 1. Risk factors for NHL 

➢ Viral infections 

• Epstein-Barr virus is related with the endemic variant of BL [11]; 

• HTLV-1 causes adult T-cell lymphomas [12]; 

• Human Herpes virus-8 is associated with Kaposi sarcoma [13]; 

• Hepatitis B and C - DLBCL and splenic marginal zone lymphoma are the most frequent subtypes due to the 

infection with the hepatitis C virus [14]; 

➢ Bacterial infections 

• Helicobacter pylori (HP) untreated and persistent infection has an increased risk of developing a primary 

gastrointestinal lymphoma [15]; 

• Chlamydia psittaci is responsible for ocular adnexal MALT lymphomas [16]; 

• Borrelia burgdorferi was reported in marginal lymphomas of the skin [17]; 

• Campylobacter jejuni in intestinal lymphomas [18]; 

➢ Congenital immunodeficiency conditions 

• Ataxia-telangiectasia; 

• Wiskott-Aldrich syndrome; 

• Severe combined immunodeficiency disease; 

➢ Acquired immunodeficiency conditions 

• Chronic immunosuppressive treatment (cytostatic drugs, radiotherapy); 

• Patients with Human Immunodeficiency Virus (HIV) infection and acquired immunodeficiency syndrome 

(AIDS) can develop primary central nervous system lymphomas [19]; 

➢ Autoimmune diseases 

• Rheumatoid arthritis; 

• Sjogren’s syndrome; 

• Systemic lupus erythematosus; 

• Hashimoto’s thyroiditis is associated with primary thyroid lymphomas [20];  

➢ Occupational factors: benzene, dyes, herbicides, pesticides [21-24];   

➢ Family history of malignant hematological diseases and nutritional factors [25]. 

Later on, the mutant clone appears as a result of the 

lesions that affect proto-oncogenes or tumor suppressor 

genes. The activation of certain oncogenes offers the 

advantage of autonomous growth and expansion. These 

oncogenes can be activated by chromosomal translocations 

or suppressor tumor loci can be inactivated by 

chromosomal deletions or mutations. Specific 

chromosomal alterations are associated with significant 

changes in gene expression. Translocation (14;18)(q32; 

q21) produces the overexpression of BCL-2 protein which 

promotes lymphocyte expansion by inhibiting apoptosis. It 

is associated with follicular lymphoma (FL), but it has also 

been described in 30-40% cases of diffuse large B-cell 

lymphoma germinal center B-cell (GCB-DLBCL) [26,27].  
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The t(8;14)(q24;q32) involving the MYC oncogene 

which promotes cell proliferation and development is the 

most common chromosomal abnormality in Burkitt 

lymphoma (BL) [28]. The t(2;5)(p23;q35) affects the 

nucleophosmin (NPM) gene and the anaplastic cell 

lymphoma kinase (ALK) gene which are described in large 

cell anaplastic lymphomas occurring in 10-20% cases of 

pediatric lymphomas and in young adults under 30 years of 

age [29]. The t(11;14)(q13;q32) is present in most cases of 

mantle cell lymphoma (MCL) with mutant implications in 

the BCL-1 gene, leading to rapid cell proliferation [30]. 

Other mechanisms that involve the inactivation of tumor 

suppressor genes are linked to lymphomagenesis. It is well-

known that the tumor protein p53 encoded by the TP53 

gene represents a vital tumor suppressor. This activity is 

fulfilled through DNA repair, apoptosis, senescence, 

autophagy via transcription-dependent activity (TA) and 

transcription-independent activity (TIA) in the nucleus and 

cytoplasm [31]. Normal functions of these pathways are 

crucial for tumor suppression. Altered lymphocytes 

undergo p53-dependent apoptosis. Genomic instability 

caused by the dysfunction of this gene, along with other 

chromosomal alterations, allows B lymphocytes to escape 

immune surveillance, having a polyclonal evolution. 

Therefore, studies have demonstrated that TP53 mutations 

initiate and maintain the progression of 

lymphoproliferative disorders [32]. Moreover, TP53 

mutations represent an independent prognostic marker of 

poor survival in DLBCL patients [33]. 

The purpose of the latest research includes a better 

understanding of the signaling pathways involved in 

lymphomagenesis. In the medical practice, most NHLs are 

of B-line. Proteins that play a key role in these signaling 

pathways are affected by the chromosomal changes. 

Recently, two types of aberrant Signal Transducer and 

Activator of Transcription (STAT) 3 and 5 have been 

described, as important effectors of cellular transformation 

and their connection with hematopoietic cancers [34]. 

Among NHLs, DLBCL is associated with high-level 

STAT3 expression and activation, especially the activated 

B-cell like (ABC-DLBCL). Studies have indicated that 

different subtypes of peripheral T cell lymphomas (PTCL) 

and NK lymphomas are linked by activating the mutations 

of STAT 3 and STAT 5B and increased phosphorylated 

STAT3 and STAT5B proteins which give growth 

advantage to transduced cell lines or normal NK cells [35]. 

STAT 5BN642H mutations has been reported in adult T 

cell-leukemia/lymphoma and γδ-T cell lymphomas, like 

hepato-splenic TCL, primary cutaneous TCL, 

monomorphic epitheliotropic intestinal TCL, while STAT 

3 domain Y640 F and D661Y/V/H/N mutations have been 

found in T-large granular lymphocyte leukemia, NK, NK/T 

and adult T cell leukemia/ lymphoma [36]. 

What is known about the B cell receptor (BCR) 

signaling pathways in normal B-lymphocytes? 

BCR is a signaling complex expressed by the most 

normal and malignant B lymphocytes. It is a 

transmembrane signaling complex involved in the 

proliferation, differentiation, adhesion or apoptosis of 

these cells [37,38]. Initially, it was considered that an 

inducible loss of murine BCR causes the death of 

peripheral B-cells. Subsequently, it was concluded that 

both ligand-independent activation in the absence of the 

receptor and the activation sustained by its presence are 

important in normal B-cell survival. It is thought that the 

chronic activation of the BCR pathways is responsible for 

various B-cell malignancies. Studies on B-line lymphomas, 

such as DLBCL, FL, MCL, and BL have shown major 

importance in the survival and proliferation of lymphocytes 

through BCR [39]. Receptor activation is dependent on 

nuclear factor Kappa-B (NF-kB) and PI3K mediated 

signaling pathways. Normally, NF-kB is involved in several 

stages of growth and differentiation of B and T lymphocytes, 

having a protective role on lymphocyte precursors, ensuring 

an anti-apoptotic role against tumor necrotic factors  

(TNF-α) [40]. Constitutional mutations of BCR at 

immunoglobulins α and β levels have been identified in 

primary DLBCL, especially in ABC-DLBCL expressing 

high levels of NF-kB activity and associated with a poor 

outcome [41]. These mutations are not the only ones which 

increase the cellular response to BCR activation. Studies 

demonstrate the existence of additional mutations, such as 

CARD11 mutation which ensures the activation and 

potentiates NF-kB activity [42,43]. 

Many studies have evaluated the role of Wnt signaling 

pathways in carcinogenesis [44,45]. Normally, this 

signaling pathway is involved in cell proliferation, 

differentiation, survival and apoptosis, as well as, 

angiogenesis. The Wnt signaling pathway is characterized 

as canonical and non-canonical, B-catenin-dependent and 

B-catenin-independent. In the absence of the ligand, B-

catenin is destroyed by a complex. It binds to receptor-

transmembrane frizzled proteins (Fz proteins) and low-

density lipoprotein receptor-related protein 5/6 (LRP 5/6) 

and reaches the nucleus. Through T-cell factor and 

lymphoid-enhancing factor (Tcf/Lef), transcription factors 

produce cellular changes. Several studies have documented 

its involvement in carcinogenesis, leukemogenesis, as well 

as in lymphomagenesis (DLBCL, BL, and MCL) [46-48]. 

For a better understanding of the molecular 

mechanisms underlying the pathogenesis of lymphomas, 

the researchers studied how signaling pathways potentiate 

one other. MiR-101 is associated with proliferation, 

migration, invasion and cell apoptosis [49,50]. Its role in 

carcinogenesis was demonstrated by various studies 

[51,52]. Recently, Huang et al. developed a theory 
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according to which miR-101 expression is down-regulated 

in DLBCL [53]. Therefore, low levels of miR-101 in 

patients with DLBCL are correlated with tumor 

progression by targeting KDM1a pathway. 

The involvement of oxidative stress in NHL 

Involvement of oxidative stress in lymphomagenesis 

has been the main aim of several studies [54-57]. Oxygen 

participates in energy production, a process that takes place 

in the mitochondria. Following this process, intermediate 

forms of reactive oxygen (ROS) and nitrogen species 

(RNS) appear into the body within the basal cell 

metabolism, but also as a result of the exposure to 

exogenous factors such as pollution, cigarette smoke or 

hyperoxia [58]. Numerous enzymes participate in the 

process of producing free radicals (FR), including 

nicotinamide-adenine-dinucleotide phosphate (NADPH), 

succinate dehydrogenase (SDH), cytochrome c reductase, 

cytochrome b5, monoamine oxidases (MAO-A and MAO-

B), pyruvate dehydrogenase complex (PGDH). A variable 

number of endogenous antioxidant defense systems have 

the ability of neutralizing ROS. These antioxidant systems 

include enzymes and non-enzymatic systems [59-61]. 

Oxidative stress is a biochemical imbalance of cellular 

redox status caused by the production of reactive oxygen 

species and/or by decreasing the antioxidant systems that 

allow their accumulation in the cell [62]. Small quantities 

of ROS intervene in the physiological mechanisms, such as 

cell growth and differentiation, cell signaling, 

antimicrobial defense, phagocytosis. In exchange, large 

quantities produce pathological processes such as 

inflammation, carcinogenesis, ischemia, atherosclerosis, 

neurodegenerative diseases and allergies [63-66].  

It is considered that inflammation is a protective 

mechanism of the body against cell destruction, but there 

is a correlation between NHL, inflammation and oxidative 

stress. Sustained antigenic stimulation promotes the clonal 

proliferation of lymphocytes by inhibiting apoptosis and 

the activation of NF-kB by pro-inflammatory cytokines 

and growth factors [67]. Clonal proliferation is also 

supported by elevated levels of B lymphocyte growth 

factor (BAFF/BlyS) as shown in some autoimmune 

disorders, but also in FL [68]. Oxidative stress can activate 

a variety of transcription factors that lead to the expression 

of the genes involved in chronic inflammation, increase the 

level of pro-inflammatory cytokines (mainly interleukin-

1), stimulate and activate B lymphocytes to produce 

antibodies and alter cellular DNA [69]. Recent studies have 

shown that genetic variations of pro-inflammatory 

cytokines (TNF-α, interleukin-10) double the risk of 

DLBCL, a subtype particularly associated with 

autoimmune diseases, as demonstrated by other studies 

[70]. Genomic instability in B lymphocytes, as well as the 

activation of a transcription factor, NF-kB, give an 

advantage of autonomous growth and expansion to mutant 

lymphocytes [71]. Therefore, chronic infection disrupts 

cell growth and survival [72].  

Genes controlling the redox homeostasis are important 

‘actors’ in lymphomagenesis, therefore in a multi-center 

study, performed on 1,172 cases of NHL, ten oxidative 

stress genes (AKR1A1, AKR1C1, GPX, MPO, NOS2A, 

NOS3, OGG1, PPARG, SOD2, CYBA) were analyzed and 

it was established that the genetic variations of these genes 

lead to a high status of ROS, thus increasing the risk of 

NHL, especially DLBCL, one of the most common and 

aggressive subtypes of NHL [73]. Based on this idea, 

subsequent studies conducted on the Korean population 

group highlighted the link between the gene polymorphism 

involved in the DNA repair and the risk of NHL, as 

follows: four gene genotypes (XRCC1 399 GA, OGG1 326 

GG, BRCA1 871 TT and WRN 787 TT) have a low risk of 

NHL, while MGMT 115 CT genotype is associated with 

an increased risk. Regarding the MDR1 gene (multidrug 

resistance 1), genotype 1236 CC is associated with a low 

risk, while genotypes 3435 CT and TT have an increased 

risk of NHL [74]. 

Oxidative stress defined as an imbalance between 

oxidants and antioxidants, in favor of the oxidants, destroys 

nuclear and mitochondrial DNA [75] and favors the 

appearance of specific markers such as 8-hydroxy-2-

deoxyguanosine (8-OHdG) [76], protein carbonyl groups 

as a marker of protein oxidation [77], malondialdehyde 

(MDA) and F2-isoprostanes as markers of lipid 

peroxidation [78,79]. Mezayen et al. evaluated the activity 

of oxidant/antioxidant status in patients with NHL, before 

and one month after the specific cytotoxic regimen and 

concluded that there was an increase in MDA and a 

reduction in SOD levels, thus suggesting that 

chemotherapy destroys the balance [80]. High-levels of 8-

OHdG in tumors, blood samples and urine represent a 

promising marker for predicting the prognosis of cancers 

[81-84]. Similarly, other scientists have shown a 

correlation between elevated 8-OHdG levels and an 

increased risk of developing malignant hematological 

diseases [85] and highlighted that elevated urinary levels 

of 8-OHdG are associated with a poor prognosis in patients 

with FL [86]. Guanosine hydroxylation is the result of 

normal metabolism processes and environmental factors, 

such as exposure to cigarette smoke, asbestos, heavy metals 

or polycyclic aromatic hydrocarbons. For this purpose, a 

study conducted by Fenga et al. in 2017 demonstrated that 

8-OHdG can be used as a non-invasive marker of early 

genotoxic DNA damage following the exposure to low 

doses of benzene [87]. The conclusion was that benzene 

metabolism (through cytochrome P450) induces FR that 

affect the oxidant/antioxidant balance, increases the level of 

ROS and produces increased toxicity, affecting cell 

proliferation, differentiation and apoptosis (through p38- 

MAPK signaling pathways, SAPK/JNK, STAT3).  
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Oxidative stress is involved in various stages of the cell 

cycle, by activating cell signaling pathways, including 

tumor cell proliferation, migration and increased tumor cell 

pro-angiogenic factors. DNA-oxidative damage via 

moderate levels of ROS lead to several repercussions: it 

causes genomic instability, favors BCR and oncogenic 

kinase signaling, promotes B-cell survival and facilitates 

tumor progression [88]. On the contrary, high levels of 

ROS produce cell death. Eliminating cellular mechanisms 

that maintain efficient ROS levels might turn the balance 

of protumorigenic ROS activity toward cancer cell death. 

The role of antioxidant systems in carcinogenesis has been 

debated over the years. However, it has now been 

established that exaggerated antioxidant responses, 

regulated by specific signaling pathways, have an 

important impact in lymphomas. For example, various 

studies demonstrated that there is a correlation between 

rs1001179 polymorphisms and lower catalase activity 

which interferes with the response to oxidative stress and 

enhances tumorigenesis [89,90]. Catalase is an important 

endogenous antioxidant system that decomposes H₂O₂ into 

oxygen and water. In 2017, Wang et al. conducted a meta-

analysis which studied the correlation between GPX-1 and 

cancer risk [91]. Their conclusion was that there are 

specific polymorphisms of this enzyme family, especially 

for patients with TT/CT genotype who have an increased 

risk of bladder cancer and brain tumors, but no evidence 

was found between these polymorphisms and NHL.  

It is known that uric acid is the final product of purine 

metabolism, important components of nucleic acids and 

coenzymes that can be synthesized in the body or can be 

obtained by eating certain foods. Over the years, arguments 

have been brought to support the role of uric acid as an 

antioxidant [92,93]. This fundamental idea is supported by 

another study which has suggested that uric acid improves 

indomethacin-induced enteropathy in mice through its 

antioxidant effect [94]. A study conducted in 2015 

assigned the link between p53 and a uric acid transporter – 

SLC2A9 or GLUT9 – which functions as an antioxidant, 

capable of protecting cells against ROS [95]. 

Increased ROS levels in certain tumor cells due to 

metabolic changes or classical chemotherapeutic use, rely 

on targeting specific antioxidant pathways. Thioredoxin 

(Trx) and GSH represent two antioxidant systems with an 

important role in the regulation of cellular redox 

homeostasis. The researchers have tried to utilize the 

pharmacological inhibition of antioxidant enzymes or 

other ROS-inducing molecules to describe the specific 

antioxidant defense, but with limited efficacy in 

monotherapy regimens. Trx family members represent a 

major antioxidant system, containing Trx 1 protein, 

thioredoxin reductase (TrxR) and NADPH. For instance, in 

BL cell line models two specific compounds were utilized, 

i.e. SK053 and adenanthin, with specific targets on Trx, 

TrxR and periredoxins (Prx) 1 and 2, two H₂O₂-scavenging 

enzymes [96,97]. These molecules trigger ROS-induced 

extracellular signal-regulated kinase ½ (ERK1/2) 

activation and induce apoptosis. Auranofin, a gold 

complex, is the inhibitor of TrxR with antitumor activity in 

the preclinical models of chronic lymphocytic leukemia 

[98] and classical Hodgkin lymphoma [99]. Regarding 

GSH, elevated levels are associated with different types of 

cancer and chemoresistance [100]. Therefore, 

pharmacologists paid attention to a GSH-depleting agent, 

buthionine sulfoximine against cancer progression and 

chemoresistance, which is more effective in combinations 

with other therapeutic drugs [101]. 

The main subtypes and their specific features related to 

oxidative stress 

Diffuse large B-cell lymphoma is the most frequent 

aggressive B-cell NHL [102]. Flow-cytometry identifies 

typically B-cell antigens like CD19, CD20, CD22, CD79a 

and CD45. Molecular features have a prognostic impact. 

C-MYC is a proto-oncogene on the chromosome 8q24, 

which confers the advantage of proliferation and growth of 

malignant cells when deregulated. Translocation (14;18) is 

associated with the overexpression of BCL-2, an 

antiapoptotic factor, which along with c-MYC, 

characterizes double-expresser lymphoma (DEL), with 

intermediate prognosis. When the deregulation of BCL-6 

oncogene is added, the DLBCL turns to aggressive triple-

hit lymphoma [103]. Four distinct genetic subtypes of the 

disease with recurring mutation have been recently 

identified by Schmitz and colleagues: MCD, BN2, N1 and 

EZB [104]. The MCD subtype is characterized by the 

presence of MYD88 and CD79 mutations, the N1 has 

NOTCH1 mutations, the BN2 by BCL-6 and NOTCH2 

mutations and the EZB subtype has EZH2 and BCL2 

translocations. These facts have an important clinical 

outcome, the BN2 and EZB subtype have good prognoses. 

Genetic mutations are not the only ones responsible for 

malignant evolution. As demonstrated, oxidative stress can 

initiate lymphomagenesis, but also the progression of the 

disease. A study that evaluated oxidative stress in DLBCL 

patients via the Free Oxygen Radical Testing (FORT) for 

FR and via the Free Oxygen Radical Defense (FORD) for 

the antioxidant status has concluded that patients with 

advanced stage DLBCL have a higher level of FORT and 

a decreased level of FORD which demonstrates that ROS 

are involved in NHL pathogenesis [72]. Tumors in patients 

with advanced disease and poor prognosis have 

deregulated the expression of certain ROS-metabolizing 

enzymes and extended pro-oxidant phenotype. According 

with these findings, Kinowaki et al. demonstrated the link 

between the overexpression of GPX4 in DLBCL and worse 

prognosis [105]. GPX4 is an intracellular antioxidant 

enzyme which prevents ROS-induced cell death. 

Therefore, an antioxidant treatment of advanced tumors 
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may help patients manage oxidative stress conditions. The 

Trx system defends both normal and malignant cells 

against oxidative stress [106]. However, the 

overexpression of Trx-1 gives cancer cells the advantage 

of growth, proliferation, survival and it also correlates with 

drug resistance, as reported in DLBCL-derived cell lines 

when compared to normal B cells, using Western blotting 

and real-time PCR [107]. But, the latest studies have shown 

a new possible hope by using pro-oxidant therapies to urge 

cancer cells toward death with promising aspects in B-cell 

malignancies. Therefore, Wang and colleagues have 

established that the down-regulation of Trx-1 sensitized 

lymphoma cells to chemotherapy regimens [108]. 

According to this idea, cells lacking Trx are more sensitive 

to ROS due to reduced proapoptotic activity of Forkhead 

box protein O1 (FOXO1) [109]. Trx reduces the bonds 

between FOXO1 and p300, formed as a response to 

oxidative stress. The depletion of Trx facilitated p300-

mediated acetylation of FOXO1 and mediated cell death. 

These findings underline the role of Trx in the pathogenesis 

of DLBCL and are a solid argument for therapeutic 

exploitation. Recent studies have evaluated the 

involvement of the second group members thioredoxin-

domain-containing (TXNDC) proteins 2,3 and 6 in 

DLBCL and demonstrate that these proteins are all 

expressed in testicular and systemic lymphomas with 

clinical importance [110]. This study included a limited 

number of cases (28 de novo confirmed systemic DLBCL 

and 21 testicular DLBCL) so, further investigations are 

needed. An interesting drug-resistance mechanism 

involving antioxidant enzymes was reported in ABC- 

DLBCL, with chronic activation BCR signaling. In these 

DLBCLs, the activity of STAT3 led to the upregulation of 

antioxidant enzyme SOD2 mitochondrial and mediated 

doxorubicin resistance. The use of STAT3 inhibitor 

oppressed SOD2-dependent resistance mechanisms and 

restored doxorubicin sensitivity in preclinical models [111]. 

Grade I and II follicular lymphoma is an indolent B cell 

lymphoproliferative disorder of transformed follicular 

center B cells, while grade III is an aggressive NHL. In FL, 

85% of the cases have t(14;18) which results in the 

overexpression of the BCL-2 protein. Recent studies have 

developed a theory according to which this translocation 

can also be identified in normal cells, so it is considered 

that additional mutations are needed to produce neoplasia, 

such as the methyl transferase H3K27 EZH2 mutation, 

recognized in 27% of FL [112]. There is a particular 

subtype of FL, the pediatric form, which does not describe 

the BCL-2 rearrangement and which, according to the 2016 

WHO classification, has a high possibility of curability 

[113]. The involvement of oxidative stress in this subtype 

has recently been demonstrated [84]. Peroja and colleagues 

evaluated redox-state regulating enzymes Prx I-VI and Trx 

in untreated FL [114]. In a cohort of 76 histologically 

confirmed FLs, the expression of Prx I-VI, Trx and the 

oxidative stress marker, nitrotyrosine, were assessed. The 

immuno-histochemical results were correlated with 

clinical prognostic factors such as disease-specific 

survival, progression-free survival and overall survival. 

Their findings suggested that high Prx levels have a good 

disease-specific survival and overall survival which exhibit 

a protective role in FL patients. 

Translocation (11;14) is present in most cases of mantle 

cell lymphoma with mutant implications in the BCL-1 

gene. There are also forms in the absence of cyclin D1, but 

the overexpression of cyclin D2, with a better prognosis, is 

independent of the risk factors [115]. Zhang and colleagues 

correlated B-cell-specific transcription factor (BACH2), a 

tumor suppressor factor with hypoxic environment in MCL 

[116]. Their explanation lies in the fact that oxygen 

depletion produces an increased level of ROS and 

excessive heme, which are harmful to the body. Excess 

heme causes BACH2 degradation in B lymphocytes. 

Under hypoxic conditions, HIF-1α independently produces 

the downregulation of BACH2. Under these aspects, the 

survival of cancer cells in MCL is ensured by the 

downregulation of BACH [117]. 

Mucosa-associated lymphoid tissue lymphoma is an 

indolent, multifocal lymphoma. Between 4-20% are gastric 

MALT lymphomas, strongly associated with the HP 

infection. There is a loop between HP infection-chronic 

inflammation-ROS release and lymphomagenesis 

initiation [118]. The malignant transformation of B 

lymphocytes occurs as a result of t(11;18), (1;14), (14;18) 

during the HP infection, via the activation of NF-kB [119]. 

If the tumor’s proliferation is limited to the mucosa and it 

is closely related to the infectious agent, sometimes it is 

sufficient to eradicate the infection by means of antibiotic 

therapy in order to stop lymphomatous proliferation. 

Studies have shown that t(11;18) is associated with 

antibiotic resistance and a worse prognosis [120]. 

Small lymphocytic lymphoma is a neoplasm of mature 

clonal B lymphocytes with a typical immunophenotype 

expression of CD5 and CD23 surface antigen and mutated 

variable regions of the immunoglobulin heavy-chain 

(IGHV) genes in 50-70% of the cases [121]. The genomic 

background provides specific chromosomal abnormalities 

with prognostic importance, such as: 17p or 11q deletion 

indicate poor prognosis, whereas 13q deletion represents a 

better prognosis [122]. The role of oxidative stress in the 

pathogenesis of this malignancy has been discussed in 

several studies that have shown correlations between the 

level of oxidative stress markers and cytogenetic changes 

[123,124]. Supporting this idea, some researchers 

discovered that high levels of MDA, protein carbonyl and 

decreased levels of antioxidants (SOD and catalase) were 

associated with 17p deletion and worse clinical 

presentation [125]. 



The involvement of oxidative stress in non-Hodgkin’s lymphomas 

 7 

Oxidative stress and NHL management 

The most important findings were pointed out on the 

involvement of oxidative stress in the initiation and 

progression of NHL, but it seems that it also intervenes in 

the mechanisms of action of some cytostatic agents. 

Chemotherapeutic regimens included drugs that destroy 

cancer cells through different mechanisms. One possible 

mechanism is related to the redox cellular status. The 

adjustment of oxidative stress is a relevant factor in both 

tumor development and the responses to anticancer 

therapies. As seen before, ROS can stimulate tumor 

formation by inducing DNA mutations and pro-oncogenic 

signaling pathways. On the other hand, high ROS levels are 

usually harmful to cells and may represent a barrier for 

tumorigenesis. A large number of chemotherapeutic drugs 

exert their activity through high levels of ROS by 

interfering with antioxidant systems or ROS inducing 

pathways [126]. Cyclophosphamide is an alkylating agent 

used in the treatment of various cancers [127] which 

generates cell death through its 2 metabolites, acrolein and 

phosporamide [128]. Acrolein is responsible for the 

decreased overall antioxidant capacity and the activation of 

the stress-signaling MAP-kinases JNK, p42/44 and p38 

pathways with an increased production of ROS and 

subsequently oxidative stress causing DNA damage, lipid 

peroxidation, increased permeability of the mitochondrial 

membrane, release of cytochrome C, activation of caspase-

3 and apoptotic cell death [129]. Studies have shown that 

doxorubicin causes cell death by increasing ROS levels via 

p53-dependent manner, but it also promotes the 

accumulation of a transcription factor, FOXO3, which 

activates two apoptotic genes (Noxa and BIM) with 

subsequent release of cytochrome C and ROS [130]. The 

anti-CD20 antibody, rituximab, has a proapoptotic effect 

by downregulating BCL-2 (an antiapoptotic factor) and 

inhibiting survival p38 MAPK signal pathways. Its 

cytotoxic effect is also due to a complement-dependent 

process that generates increased amounts of ROS [131]. 

Glucocorticoids have a considerable effect on oxidative 

stress which depends on the duration of the treatment. 

These hormones increase the metabolic rate, mitochondrial 

membrane potential and mitochondrial oxidation, which in 

turn increases the production of superoxide, H₂O₂ and 

hydroxyl radicals leading to a state of cellular oxidative 

stress which causes oxidative damage to the DNA, protein 

carbonyl formation and membrane lipid peroxidation 

[132]. The benefits of radiotherapy (RT) for lymphomas 

have been well documented for many years. The RT 

concept is based on the alteration of DNA cancer cells, 

which can be done directly and indirectly [133]. The 

appearance of ROS is incriminated for indirect DNA 

damage, both in cancer cells exposed to the area of 

irradiation and in healthy cells at a distance from it. The 

penetration of heavy particles of ionizing radiation in the 

body produces the breakdown of chemical bonds and, on 

the other hand, the water which represents half of the body 

weight, is split by ionizing radiation, these mechanisms 

favoring the assimilation of hydroxyl ROS. However, there 

is a thin line between the useful level and the harmful level 

of oxidative stress in cancer treatments. When pro-oxidant 

treatment is used, malignant cells generate DNA oxidation, 

proteins oxidation and lipid peroxidation being the cause 

of the increased tumor burden. Some of the antioxidants, 

such as vitamin C, can act both as antioxidants and pro-

oxidants [134]. The pro-oxidant effect of vitamin C was 

observed at high doses, having an anticancer role. 

Ascorbate produces large amounts of H₂O₂ which activates 

proapoptotic signaling pathways, causes DNA damage and 

ultimately, cell death. Further evidence has been provided 

that targeting the antioxidant capacity of tumor cells can 

have a reliable therapeutic impact [135,136]. 

Nowadays, antioxidants are in the spotlight as an 

emerging solution to various disorders, such as cardio-

metabolic disorders, solid and blood cancers via reducing 

the oxidative stress and the inflammation levels, e.g., 

increasing TAC and SOD and decreasing MDA, TNF-α 

and C-reactive protein concentrations, and pathogenic 

links between the antioxidant levels in the serum and the 

development of malignancies has been demonstrated [137-

141]. To this regard, recent studies have focused on the 

effect of melatonin (MLT) in different diseases [142]. 

MLT is a natural hormone of the pineal gland. MLT 

activates MT1 and MT2 receptors and takes part in 

learning, memory and neuroprotection [143]. Besides its 

role in maintaining our wake-sleep cycle, melatonin may 

have anticancer activity through antiproliferative, 

antioxidant and immunostimulant effects via different 

pathways [144,145].  

Yan et al. demonstrated anti-tumor activity in 

Hodgkin’s lymphoma by inhibiting cell proliferation and 

by promoting apoptosis via the increased expression of 

LC3-II and the decreased p62 proteins [146]. Knowing its 

anti-inflammatory and anti-oxidant effects, it was 

concluded that this molecule may represent an adjuvant 

treatment in several types of cancer. The beneficial effect 

has been reflected both in the quality of life and control 

over the disease (growth, size, effectiveness of 

chemotherapies) [147,148]. The data coming from our 

research group which evaluated the involvement of 

oxidative stress in lymphoproliferative, e.g., chronic 

lymphocytic leukemia and DLBCL, and 

myeloproliferative neoplasms, e.g., essential 

thrombocythemia, pointed out that the aforementioned 

malignancies are associated with increased reactive 

oxygen species levels and reduced antioxidant capacity 

[149-152]. 
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Highlights 

✓ Lymphomagenesis is associated with increased 

oxidative stress levels. 

✓ Oxidative stress can also be involved in the action of 

several chemotherapeutic drugs. 

✓ The involvement of oxidative stress has been studied 

in DLBCL, FL, MCL, MALT and small lymphocytic 

lymphomas. 

Conclusions 

The current evidence suggests that oxidative stress is 

involved in lymphomagenesis, genetic instability, disease 

progression and NHL management. Further studies are 

therefore necessary to evaluate if and how oxidative stress-

modulating therapies can influence these processes.  
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