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A B ST R AC T 
 

 

We propose a computer modeling approach for SARS-CoV-2 

transmission that can be preferable to a purely mathematical 

framework. It is illustrated its functionality in a specific case of indoor 

transmission. Based on literature, we assume that infection is due to 

aerosols with viral particles that persist and accumulate for hours in the 

air even after the persons who produced them left the space. We 

incorporate also restricted opening hours as a mitigation measure  

and one possible behavioral change in response to this measure. It is 

shown via several examples how this algorithmic modeling approach 

can be used to run various scenarios in order to predict the efficacy  

of the intervention.   
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Introduction  

The SARS-CoV-2 pandemic prompted an enormous 

research interest from various fields [1,2]. There is an 

understandable rush to public dissemination due to the 

global impact of the pandemic and the urgency for 

effective measures [3,4]. Of particular importance is the 

work on creating and analyzing epidemiological models 

[5]. This is because, as imperfect as they are, models are 

the default tools in making predictions on the evolution of 

the epidemic and in drafting public policy. On the other 

hand, data on all features related to this epidemic is 

inherently scarce due to the novelty of the disease [6,7]. 

This will improve as time and experience accumulate but, 

in the meantime, we can still develop theoretical models 

that test for various plausible scenarios so they can be ready 

for testing as soon as relevant data emerge.  

Many epidemic models are purely mathematical in 

nature. Even a cursory overview of Mathematical 

Epidemiology reveals that there is always a compromise 

between the complexity of the model and the ability to 

analyze it fully in the form of abstract theorems [8,9]. The 

more complex (and more realistic) the model is the harder 

it becomes to use purely mathematical tools and the more 

reliance on numerical methods and simulations. 

Furthermore, incorporating control measures in the model 

brings unique challenges. One may want to predict the 

effect of these measures and, with each variation, the 

mathematics may change sufficiently to warrant a new 

analysis. Instead, we argue that, in some situations, it may 

be better and more practical to start, from the beginning, 

with a computer-based model which is capable to contain 

features that are difficult to even formulate in mathematical 

equations let alone analyze them. This approach presents 

itself with several advantages such as: modularity (extra 

features can be added to the program as needed without the 

need to start from the beginning), speed of implementation 

and prediction of outcomes, possibility of running and 

testing competing scenarios for intervention in the 

epidemic. These can be implemented quickly in the 

program without the need to reformulate and analyze from 

scratch an entire new model.  

The purpose of this article is to illustrate this computer-

based modeling approach by focusing on a single aspect of 

the epidemic as described below. Namely, we will focus on 

a certain type of transmission and how it relates to a 

specific type of policy designed to slow the spread of the 

virus. Generally speaking, these two are:  

• the ability of the viral particles to linger in the air for 

hours in closed spaces and to infect susceptible people even 

after the source (the infected person) left the space [10].  
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• the use of restriction on opening times for various 

locations such as stores, bars or other businesses in an 

attempt to reduce the contact time among people [11].  

Discussion 

Remark 1 

We emphasize that our goal here is not to build a 

complete SARS-CoV-2 model. Rather, we provide a proof-

of-concept algorithm that is focused on a narrow “slice” 

of very specific population dynamics and control measures 

assumptions. Therefore, our program is NOT to be used as 

a standalone tool for predicting the epidemic and the effect 

of control measures. In fact, such a tool will necessarily 

contain many more additional modules and there will be 

numerous variations adapted to a particular community.  

Early in the pandemic, there was enough evidence to 

suggest that most of the transmission occurs indoor and a 

small number of infected people are responsible for a large 

number of new infections (the so-called super-spreader 

events) [12]. A potential key mechanism is that aerosols with 

viral particles linger more time in the air compared to other 

similar viruses. They can stay airborne for hours before 

settling down and therefore they can accumulate in small 

spaces where a relatively high number of individuals come 

and go. A brief description of the mechanism is provided by 

the United States Environmental Protection Agency (EPA) 

on their website https://www.epa.gov/coronavirus/indoor-

air-and-coronavirus-covid-19. There are also many 

proposed mitigation measures against indoor transmission 

and other non-pharmaceutical interventions [13,14].  

One important consequence of indoor transmission is 

the possibility that someone can be infected even if that 

person enters an empty store if that space was visited in the 

past couple of hours by someone infected. This risk gets 

higher the smaller the space is and the more people come 

in and out [15,16]. Furthermore, while people stay 

physically apart, they may, unknowingly, still transmit the 

aerosols from one another. Put it differently, if the virus 

lingers in the air for several hours, two people who visited 

the same spot within that time interval can be considered 

as being in physical contact for all practical purposes. Note 

that the effect of wearing masks can be included in the 

model by adjusting downward the transmission probability 

term depending on the multitude of factors such as: 

compliance, quality of masks, etc. [17,18].   

At the same time, in some regions, there were 

restrictions on opening times for stores and other 

businesses as part of the measures taken to slow down the 

spread of the virus. These actions can be both voluntary or 

enforced by authorities [19,20]. Notice that just this single 

intervention method implies lots of different assumptions. 

First of all, the rationale behind this policy depends on the 

type of location. Non-essential places like bars and 

restaurants were closed to simply reduce the number of 

contacts. Essential businesses such as grocery stores had 

restricted opening hours for various reasons: reduced staff 

availability, allowing time for re-stocking and sanitizing the 

store, etc. Moreover, voluntary restricted hours may or may 

not completely overlap with the mandated ones [21,22]. 

On the other hand, the pandemic and the control 

measures changed people’s behavior in a profound way. In 

particular, restricted opening times have the potential to 

interfere with the daily patterns of individuals. For 

example, if a store is closed but a similar one is open then 

a person may visit the open one at the time when he/she 

usually wants to shop. This, among other things, may cause 

certain locations to have an influx of visitors not normally 

encountered at various times of the day which may cause 

overcrowding if such locations are small [23,24]. Again, 

this is one out of many other possibilities such as: adjusting 

the schedule to visit when the favorite store is open, 

consolidating shopping trips into fewer ones, shopping 

only during week-ends, etc.  

It is obvious that a purely mathematical modeling 

approach would be challenging if one needs a model to run 

different scenarios to analyze the effect of this control 

measure. In order to show how a computer algorithm can 

be implemented as an alternative, we will focus on the 

following behavior change from the ones mentioned 

above: the visiting of an alternate location that is open. In 

particular, the program will consider the aspect of 

preference ranking of locations of a population: if the most 

preferred location is closed, an individual will go to an 

alternative in the decreasing order of preference. Then we 

will run simulations for various scenarios that take into 

account restricted opening hours. We emphasize, again, 

that the program and the examples that we present are 

strictly limited to the basic assumptions that we make on 

the population dynamics and the distribution of opening 

times. These assumptions are for illustrating purposes and 

do not cover the entire complexity of a real-life situation. 

In the following section we establish these assumptions 

about the population and the transmission features together 

with the general description of the algorithm.  

Population dynamics, epidemiology assumptions and 

the general algorithm 

We will construct a “single issue” type of model by 

neglecting other possible social adaptations to the opening 

time restrictions such as: changing the time to visit when 

the favorite location is open, going on a different day, etc. 

Each of these can have its own implementation as part of  

a larger program. Furthermore, the overall dynamics  

is simplified as much as possible while still focusing  

on the key aspect of movement to various locations that  

are open. In what follows we will describe the population 

and its patterns. 
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Population dynamics assumptions 

Suppose a population in a town is subject to a lock-

down whereby only a fixed number of similar locations are 

open at various times (such as grocery stores). The 

underlying assumption is that, even if a pandemic wave 

justifies a lock-down, it may be necessary to still allow 

individuals to go out and obtain the essentials such as food 

and medicine [25,26]. We assume the following:  

➢ At all times there is at least one location open.  

➢ The population is split into groups by preference 

ranking of locations. That means, for each group there 

is a list of locations in decreasing order of preference. 

If a given location is closed, individuals in that group 

will consider going to the next location in that list if 

open and so on.  

➢ Each individual, in a given hour of the day, is either at 

home or at one of these locations.  

➢ Each individual represents his/her family unit (thus, if 

one individual is infected, we consider the entire family 

infected).  

➢ Families rarely visit each other (this means infections 

at home will be rare).  

➢ The rate of moving from home to an open location 

depends on the time of day (consistent with the window 

of time when a typical individual has the time to visit a 

store, for example). The rate of returning home from an 

open location depends on the typical time spent for that 

type of location (such as the average shopping time). 

The epidemiology assumptions 

Since the population is in a lock-down we consider that 

infection can only happen when visiting one of the open 

locations that are unavoidable to visit (again, for simplicity, 

we can think of them as grocery stores). We also assume 

that infection actually happens from inhaling the 

contaminated air produced by the infected from the present 

and the recent past. Thus, we have the following concepts: 

➢ The viral load. Each location will have a current viral 

load and maximum viral load. The current viral load 

represents a measure of viral particles lingering in the 

air at a given moment of time which is proportional to 

the number of infected people who are inside that 

location at the present moment and up to several hours 

earlier (to account for the fact that the virus lingers in 

the air even after an infected person left the location). 

The maximum viral load represents the largest possible 

viral concentration in the air such that any additional 

infected person will not raise the infection risk in the 

air any further (in other words, the air is saturated as far 

as viral concentration is concerned). 

➢ The infection mechanism. A susceptible individual 

may become infected from the contact with the 

contaminated air inside a location at a maximum 

infection rate that can only happen if the air has a viral 

saturation level (i.e., it reached its maximum possible 

viral load). Thus, the infection term is implemented 

according to the following formula:  

 
If the current viral load is less than the maximum viral 

load at that location, or: 

 

If the current viral load reaches its maximum possible 

for that location. 

The overall steps of the algorithm 

The program will read the data from a file (described in 

the Appendix below) that contains the information about 

the population split by preference ranking groups, the 

open/close policies in a given day and the maximum 

infection rate. The program iterates by the current time 

value. The main steps are as follows: 

➢ Step 1. Reading data from the input file. Initialize 

current time counter with 0. 

➢ Step 2. Transfer from susceptible to infected at each 

location to account for new infections. Transfer from 

infected to recovered. 

➢ Step 3. Transfer between home and open locations 

according to the preference ranking. 

➢ Step 4. Transfer from recovered to removed to account 

for death from disease. 

➢ Step 5. Writing the current size of susceptible and 

infected in the output file. 

➢ Step 6. Increment current time value by 1. 

➢ Step 7. If maximum running time is not reached go back 

to Step 2. 

A more detailed pseudocode implementation of the 

algorithm, the format for the input data and several 

examples are provided in the Appendix. The examples 

were chosen to illustrate how this type of modeling 

approach can be used to assess whether an intervention 

moves the epidemiological situation in the right direction 

(i.e., fewer infections).  

Remark 2 

We can see from the examples that a certain 

open/closed configuration of locations may or may not 

cause fewer infections depending on whether susceptible 

individuals face these situations: 

• they prefer to visit a large location with a large maximum 

viral load that is not easily reached, 

• they find the most preferred location closed some or most 

of the time,  

• their next choice in the preference ranking that is open 

happens to be a smaller location with a low maximum viral 

load that is easy to reach, 

• they prefer to go to an alternative location rather than 

changing the shopping time, 

• there is low or high masking quality and compliance. 
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Remark 3 

The same type of analysis and simulation can be used 

to change the open/closed policy to avoid overcrowding the 

smaller spaces. It will require, first, surveying the 

population preferences and restrictions on movements 

followed by running simulations with various open/closed 

policies to narrow down those that actually slow the 

transmission. 

Conclusions 

We proposed a computer-based modeling approach for 

SARS-CoV-2 transmission that allows for fast adaptation 

to a multitude of assumptions and intervention scenarios 

which would otherwise be difficult to analyze strictly with 

mathematical tools. For demonstration purposes, we 

limited ourselves to an infection mechanism that is entirely 

based on the accumulation of aerosols in closed spaces. We 

incorporated in this program the mitigation measures based 

on opening or closing some locations at various times and 

the moving patterns among these locations by taking into 

account only the situation whereby an alternative exists for 

a closed location.  

As mentioned from the beginning, our algorithm is 

designed as a proof of concept since it only takes into 

consideration a very narrow set of assumptions. As such, 

neither the model herein nor the accompanying examples 

can be used as stand-alone tools for describing the 

epidemic. It only shows how one can go from a set of 

assumptions to an algorithm ready for analyzing various 

scenarios. Its main advantage is that it can be easily 

extended toward more realism without the need for 

restating and proving new theorems as is the case in a 

purely mathematical model. Even within the narrow 

confines we set for our model it still has several limitations. 

For example, it assumes at least one location open at any 

given time. Thus, our model only considers the effect of 

opening policies on the choice of location to visit. In other 

words, we assume that there is always a location open that 

an individual is still willing to visit. The program does not 

take into account the effect of having all locations closed. 

This will require a dynamical modification of the transfer 

rates among locations since people are forced to adapt and 

find different shopping times. This, in fact will likely 

require a more in-depth survey of individual preferences 

and restrictions because finding a different time to shop 

than the typical one may need to take into account the 

working hours or other blackout times in a typical daily 

schedule. For better accuracy, it may be necessary to 

organize the input data by the individual rather than groups 

of a certain preference ranking. Another limitation is the 

use of the same transfer rates among locations for every 

day when, in reality, these will have to be further refined to 

account for whether certain people prefer certain days in 

the week to visit a location. We plan to work on these 

avenues in the near future. 

Appendix 

The pseudocode implementation of the algorithm. In 

this section we introduce the notations of all relevant 

variables and parameters, the implementation in 

pseudocode of the algorithm and several examples which 

were run using the programming language C++. 

Notations and definitions 

We denote by L the number of locations that can be 

visited when open. Each individual, at the current time n 

measured in hours, is either at home (identified as location 

0) or at one of these away from home locations (labeled 

1,2, · · · , L). From one hour to another, a certain fraction 

of the population moves from home to the most desired 

location that is open at that time in decreasing order of 

preference. At the same time, a proportion of individuals at 

each of the “away from home” locations will move back 

home. The rate of moving back home is denoted by a(n) 

and from home to the open location is b(n).  

A preference ranking is the ranking of locations in 

decreasing order of preference for a group of people. Given 

L the number of locations and P the number of preferences 

we define the following: S[i][j][n] is the number of 

susceptible of preference i, at location j at time n, I[i][j][n] 

is the number of infected of preference i, at location j at 

time n and R[n] is the number of removed individuals at 

time n (this class combines the recovered or hospitalized, 

where i = 1, 2, · · · , P; j = 0, 1, · · · , L and n = 1, 2, · · · .  

The maximum viral load for each location from 0 to L 

is denoted by N[0], N[1], · · · , N[L]. The current viral load 

for each location is denoted by N crt[0], N crt[1], · · · , N 

crt[L] and it is given by the number of infected people at 

each location up to 3 hours in the past (this number is an 

estimation and it may be different if experimental data 

shows a different value). 

The λ is the maximum infection rate (when the location 

is at the maximum viral load). Therefore, the infection rate 

at a location j will be given by: 

 
Each preference i from 1 to P is given by the row i of a 

matrix with P rows and L columns. Specifically, c[i][1], 

c[i][2],· · ·, c[i][L] is the ranking of locations in decreasing 

order of preference corresponding to preference i. For 

example, suppose we have 3 locations and: 

 
This means that for the group of people with the 

preference ranking number 2, their most preferred location 

is 3 followed by location 1 and finally by location 2. If 3 is 

closed and 1 is open they will choose to visit 1.  
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An opening policy is the open/closed information for 

each store in a given time interval within a day. The 

number of possible opening policies is not fixed and it is 

determined by how many times during a day the open/ 

closed status change. Let’s denote by T the number of 

opening policies. This means that the 24 hours duration of 

a day is split into T intervals starting with hour 0 and 

ending with hour 23 as follows: 

 
For example if we have a certain policy for the time 

interval 0 to 7, another one for 7 to 20 and another one from 

20 to 23 then T = 3, t[1] = 7, t[2] = 20, t[3] = 23. Each 

opening policy will be codified in a matrix with T rows and 

L columns. Specifically, 

 
is the open/closed information for the opening policy i 

where the value of o[i][j] is either 1 if location j is open or 

0 if location j is closed.  

For example, suppose there are 3 stores and 2 opening 

policies as follows: t[1] = 15, t[2] = 23 and: 

 

This means that, between the hours 0 to 15 the store 1 

is closed but the stores 2 and 3 are open and between the 

hours 16 and 23 the store 1 is open and the other two are 

closed. The format for the input file is given in Figure 1.  

The pseudocode of the algorithm can be accessed at 

https://github.com/s-gannon/Opening-Policy-Simulation 

Let’s consider now several examples. Suppose we have 

a population where a significant portion prefers to visit a 

large store (see Figure 2). We can see that about 5000 of 

the total of 6000 susceptible prefers to visit store 1 which 

also has a large maximal viral load. The result of the 

simulation is shown in Figure 3. The susceptible class 

settles at 2000 after the epidemic is over which means that 

about 4000 were infected. We now change the input data 

file to restrict the open hours of the most preferred stores 

(thus forcing the population to visit the stores with lower 

maximal viral load) as seen in Figure 4. The result shown 

in Figure 5 shows that the susceptible settle now at about 

1000 meaning that 5000 were infected by the end of the 

epidemic. This may suggest an unwanted effect, however, 

the maximum transmission rate λ = 0.2 remained the same. 

This may not be realistic if restricted opening times are 

accompanied by strict masking protocols which may have 

the effect of reducing the airborne viral particles. To take 

this into account, let’s consider the same input file but with 

a lower transmission rate λ = 0.1 (Figure 6). 

The result shown in Figure 7 indicates that the 

susceptible settle at about 3000 leaving 3000 eventually 

infected. This, contrary to the previous case, indicates a 

positive effect of the measure. 

Figure 1. Input data file format 

 

 

 

Figure 2. Preferred 

locations open most of the 

time 

 

 

 

 

Figure 3. Preferred locations open most of the time 

 

 

Figure 4. Restrictions 

on the preferred locations 

 
Figure 6. Restriction on 

the preferred locations and 

masking protocols 

 

 

   Figure 5. Restrictions on the preferred locations 
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Figure 7. Restriction on the preferred locations and 

masking protocols 
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