December 1975

Heptageniidae (Ephemeroptera) of Wisconsin

R. Wills Flowers
A & M University

William L. Hilsenhoff
University of Wisconsin

Follow this and additional works at: http://scholar.valpo.edu/tgle

Part of the Entomology Commons

Recommended Citation
Available at: http://scholar.valpo.edu/tgle/vol8/iss4/5

This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at scholar@valpo.edu.
Heptageniidae are one of the most abundant and widespread components of Wisconsin's aquatic insect fauna. In almost any stream with a firm substrate and free of gross pollution, the flattened nymphs can be found hiding in crevasses and under rocks, or clinging to submerged wood. Adults and nymphs are easily distinguished from mayflies of other families, nymphs by their dorsoventrally flattened head and dorsal eyes, and adults by their 5-segmented tarsi and complete wing veination. This paper presents our knowledge to date of Heptageniidae in Wisconsin.

Early studies of Heptageniidae and other mayflies are summarized by Burks (1953). The original classification of Heptageniidae was based on the adult male, particularly length ratios of fore tarsal segments. Traver (1933a, b, 1935) redefined the genera on nymphal characters. She erected the genus Stenonema for a larger group of American species that had been placed in Heptagenia and in the European genus Ecdyonurus. Although the great diversity of nymphal forms in this family was known for some time, Traver seems to have been the first to recognize its taxonomic value and her classification is, with some modification, still in use today.

More recently Daggy (1945), Burks (1953), Leonard and Leonard (1962), Lewis (1974a), and Edmonds and Jensen (1974) described additional species of this family. The genus Stenonema has been revised by Lewis (1974b), and a new genus, Stenacron, was erected by Jensen (1974).

Although Heptageniidae in states adjacent to Wisconsin have been studied in some detail (Daggy, 1941, Minnesota; Burks, 1953, Illinois; Leonard and Leonard, 1962, Michigan), similar studies in Wisconsin are lacking. Only a preliminary survey of Wisconsin's mayfly nymphs (Kreuger, 1969) and a study of the Pine-Popple River fauna (Hilsenhoff and Walton, 1972) have been carried out. In these studies, mayflies were identified using existing literature, especially Burks (1953), which has become the standard reference work on midwestern mayflies.

During a study of the biology and ecology of Wisconsin Heptageniidae, we encountered numerous difficulties in identifying specimens using existing keys, and a study of their taxonomy was initiated. Nymphs collected from Wisconsin during the studies mentioned above were reexamined, as were specimens from the Illinois Natural History Survey and the University of Minnesota. In addition, we sampled numerous streams during the open water months of 1972 and 1973, obtaining many additional specimens. A rearing program was undertaken to correlate adults and nymphs. Specimens, along with detailed records of collecting sites, are retained in the University of Wisconsin Collection.

In Wisconsin, 22 species belonging to seven genera have been found, and they are separated by the following keys to adult males and mature nymphs. Female adults can be keyed as far as the couplets using genitalia. Young nymphs, especially those of Stenonema, are often difficult to identify since their color patterns change as they grow. Anepeorus simplex (Walsh), Pseudiron centralis McDunnough, Heptagenia aphroditc McDunnough, H. inconspicua McDunnough, H. maculipennis Walsh, H. persimplix McDunnough, Stenonema ithaca (Clemens and Leonard), and S. luteum (Clemens) have not been collected, but could occur in Wisconsin, especially in large rivers in the southern and western parts of the state.

1Research supported in part by the Research Division, College of Agricultural and Life Sciences, University of Wisconsin, Madison, and by a grant from the Wisconsin Department of Natural Resources.
2Laboratory of Aquatic Entomology, Florida A & M University, Tallahassee, Florida
3Department of Entomology, University of Wisconsin, Madison, Wisconsin 53706
KEY TO WISCONSIN HEPTAGENIIDAE—ADULTS

1. Vein R₄₊₅ of hind wing unbranched (Fig. 1A).......................... Arthroplea bipunctata
2. Vein R₄₊₅ forked at or near center of wing.......................... Epeorus vitrea
3. First segment of fore tarsus as long as or longer than second.............. Rhithrogena
4. First segment of fore tarsus shorter than second..
5. Crossveins in stigma area of fore wing Anastomosed (Fig. 1B).................. Rhithrogena
6. Stigmatic crossveins not Anastomosed...
7. Vein R₄₊₅ forked at or near center of wing.. Arthroplea bipunctata
8. Vein R₄₊₅ unbranched (Fig. 1A)... Epeorus vitrea
9. First segment of fore tarsus as long as or longer than second.............. Rhithrogena
10. First segment of fore tarsus shorter than second-------------------------------
11. Crossveins in stigma area of fore wing Anastomosed (Fig. 1B).................. Rhithrogena
12. Stigmatic crossveins not Anastomosed...
13. Vein R₄₊₅ forked at or near center of wing.. Arthroplea bipunctata
14. Vein R₄₊₅ unbranched (Fig. 1A)... Epeorus vitrea
15. First segment of fore tarsus as long as or longer than second.............. Rhithrogena
16. First segment of fore tarsus shorter than second-------------------------------
17. Crossveins in stigma area of fore wing Anastomosed (Fig. 1B).................. Rhithrogena
18. Stigmatic crossveins not Anastomosed...
19. Vein R₄₊₅ forked at or near center of wing.. Arthroplea bipunctata
20. Vein R₄₊₅ unbranched (Fig. 1A)... Epeorus vitrea
21. First segment of fore tarsus as long as or longer than second.............. Rhithrogena
22. First segment of fore tarsus shorter than second-------------------------------
23. Crossveins in stigma area of fore wing Anastomosed (Fig. 1B).................. Rhithrogena
24. Stigmatic crossveins not Anastomosed...

KEY TO WISCONSIN HEPTAGENIIDAE—NYMPHS

1. Two caudal filaments Spinadis sp.
2. Three caudal filaments Spinadis sp.
3. Two caudal filaments Spinadis sp.
4. Three caudal filaments Spinadis sp.
5. Two caudal filaments Spinadis sp.
6. Three caudal filaments Spinadis sp.
7. Two caudal filaments Spinadis sp.
8. Three caudal filaments Spinadis sp.
9. Two caudal filaments Spinadis sp.
10. Three caudal filaments Spinadis sp.
11. Two caudal filaments Spinadis sp.
12. Three caudal filaments Spinadis sp.
13. Two caudal filaments Spinadis sp.
14. Three caudal filaments Spinadis sp.
15. Two caudal filaments Spinadis sp.
16. Three caudal filaments Spinadis sp.
17. Two caudal filaments Spinadis sp.
18. Three caudal filaments Spinadis sp.
19. Two caudal filaments Spinadis sp.
20. Three caudal filaments Spinadis sp.
Fig. 1. A–Hindwing of Arthroplea; B–Forewing of Rhithrogena, showing anastomosed crossveins between costa and subcosta; Penes of Rhithrogena; C–jejuna; D–undulata; E–impersonata; F–Forewing of Stenacron; Penes of: G–Stenacron interpunctatum; H–Stenonema fuscum; I–Heptagenia diabasia; J–H. flavescens; K–H. pulla; L–H. lucidipennis; M–H. hebe; N–Maxilla of Stenonema bipunctatum.

2'. Lacking tubercles on dorsum .. Epeorus vitrea
3. Second segment of maxillary palpi elongated, recurved over dorsum of thorax .. Arthroplea bipunctata
Fig. 2. Spinadis sp.: Above—Dorsal view; Below—Lateral view with legs and gills removed.
3'. Second segment of maxillary palpi not elongated or recurved over dorsum of thorax .. 4

4. Gills, especially first and seventh pairs, greatly expanded ventrally to form an adhesion disc .. Rhithrogena 5

4'. Gills not expanded ventrally, seventh pair may be reduced 8

5. \textit{Rhithrogena}—gills 2-6 with fingerlike process on dorsal margin (Figs. 3B, C) 6

5'. Gills with dorsal margin rounded (Fig. 3A) .. 7

6. Dorsal process of gills 2-6 longer than broad (Fig. 3C) \textit{R. undulata}

6'. Dorsal process about as long as broad (Fig. 3B) \textit{R. impersonata}

7. Profemur with dark band (Fig. 3G) .. \textit{R. jejuna}

7'. Profemur without dark band, dark margins of femur constricting or even dividing pale center area (Fig. 3I) \textit{R. pellucida}

8. Seventh pair of gills much reduced, lanceolate ... 13
8'. Seventh pair of gills not reduced, plate-like .. Heptagenia 9
9. *Heptagenia*—seventh pair of gills biramous, containing plate and tuft elements; claws not pectinate ... 10
9'. Seventh pair of gills uniramous, only plate element present; claws pectinate (Fig. 3L) .. 12
10. Venter of abdomen with dark markings on posterior edge of ninth sternum only *H. flavescens*
10'. Dark markings present on lateral margins of ninth sternum and usually present on anterior sterna. ... 11
11; Abdominal terga 4 and 8 with a pair of pale submedian streaks *H. diabasia*
11. Abdominal terga 4 and 8 with pale median spot *H. pulla*
12; Base of caudal filaments unicolorous, white or nearly so *H. lucidipennis*
12. Base of caudal filaments distinctly darkened at articulations *H. hebe*
13. Gills of abdominal segments 1-6 pointed at apex (Fig. 3D) *Stenacron interpunctatum*
13. Gills of abdominal segments 1-6 rounded or truncate at apex *Stemonema 14*

Fig. 4. Abdomens of *Stemonema* nymphs: A—fuscum (ventral); B—mediopunctatum (ventral); C—bipunctatum (ventral); D—terminatum (ventral); E—rubrum (ventral); F—integrum (dorsal); G—bipunctatum (dorsal); H—terminatum, young nymph, (dorsal).
A discussion of each species follows, with notes on identification, biology, and synonymy. The synonymy includes the original name, all species synonyms, and the current name. Generic synonyms appear in Needham et al. (1953). Table 1 summarizes the life cycles and ecology, and known distribution is shown in Figures 5 and 6.

Table 1. Summary of life cycles and ecology of the species of Heptageniidae known to occur in Wisconsin.

<table>
<thead>
<tr>
<th>Species</th>
<th>Seasonal Occurrence</th>
<th>Occurrence of Nymphs</th>
<th>Preferred Habitat</th>
<th>Substrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arthroplea bipunctata</td>
<td>April-May to mid-late May</td>
<td>Uncommon</td>
<td>Vernal ponds near large streams</td>
<td>Sedges</td>
</tr>
<tr>
<td>Epeorus vitrea</td>
<td>Sept.-July to early July</td>
<td>Fairly common</td>
<td>Rocky streams of all sizes</td>
<td>Gravel to large rocks</td>
</tr>
<tr>
<td>Heptagenia diabacta</td>
<td>Year around to late May-Sept.</td>
<td>Common</td>
<td>Sand-bottomed streams</td>
<td>Debris or rocks</td>
</tr>
<tr>
<td>H. flavescens</td>
<td>Year around to June</td>
<td>Rare</td>
<td>Medium to large streams</td>
<td>Rocks and debris in deep water</td>
</tr>
<tr>
<td>H. hebe</td>
<td>Year around to June-Sept.</td>
<td>Abundant</td>
<td>All types of streams, moderate current</td>
<td>Rocks</td>
</tr>
<tr>
<td>H. lucidipennis</td>
<td>June-July to June-July</td>
<td>Common</td>
<td>Medium streams</td>
<td>Rocks</td>
</tr>
<tr>
<td>H. pulla</td>
<td>Year around to June</td>
<td>Uncommon</td>
<td>Streams and large lakes</td>
<td>Gravel to large rocks</td>
</tr>
</tbody>
</table>

Published by ValpoScholar, 1975
Table 1. Continued

<table>
<thead>
<tr>
<th>Species</th>
<th>Seasonal Occurrence</th>
<th>Abundance</th>
<th>Occurrence of Nymphs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nymphs</td>
<td>Adults</td>
<td>Preferred Habitat</td>
</tr>
<tr>
<td>Rhithrogena impersonata</td>
<td>Year around</td>
<td>June-July</td>
<td>Uncommon</td>
</tr>
<tr>
<td>R. jejuna</td>
<td>Year around</td>
<td>May-June</td>
<td>Uncommon</td>
</tr>
<tr>
<td>R. undulata</td>
<td>Year around</td>
<td>June</td>
<td>Uncommon</td>
</tr>
<tr>
<td>Spinalis sp.</td>
<td>(?)</td>
<td>June?</td>
<td>Very rare</td>
</tr>
<tr>
<td>Stenacron interpunctatum</td>
<td>Year around</td>
<td>June-Aug.</td>
<td>Abundant</td>
</tr>
<tr>
<td>Stenoneoma bipunctatum</td>
<td>Sept.-July</td>
<td>June</td>
<td>Uncommon</td>
</tr>
<tr>
<td>S. exiguum</td>
<td>Year around</td>
<td>June-Aug.</td>
<td>Common</td>
</tr>
<tr>
<td>S. fuscem</td>
<td>Year around</td>
<td>June-July</td>
<td>Abundant</td>
</tr>
<tr>
<td>S. integrum</td>
<td>Year around</td>
<td>June</td>
<td>Rare</td>
</tr>
<tr>
<td>S. medio-punctatum</td>
<td>Year around</td>
<td>June-July</td>
<td>Uncommon</td>
</tr>
<tr>
<td>S. pulchellum</td>
<td>Year around (?)</td>
<td>June</td>
<td>Rare</td>
</tr>
<tr>
<td>S. rubrum</td>
<td>Year around</td>
<td>June-July</td>
<td>Fairly common</td>
</tr>
<tr>
<td>S. terminatum</td>
<td>Year around</td>
<td>May-June</td>
<td>Common</td>
</tr>
<tr>
<td>S. tripunctatum</td>
<td>July-May</td>
<td>May-Aug.</td>
<td>Fairly common</td>
</tr>
</tbody>
</table>

Arthroplea bipunctata (McDunnough)

Synonomy.—Cinygma bipunctata McDunnough (1924c:76); *Arthroplea bipunctata* Ide (1930:42).
Fig. 5. Distribution of Arthroplea, Epeorus, Heptagenia, Rhithrogena, Spinadis, and Stenacron in Wisconsin. Marks represent county records.

Adult description.—McDunnough (1924).

Nymphal description.—Burks (1953, Fig. 395).

Arthroplea bipunctata is unique among Wisconsin Heptageniidae in its preference for living in temporary ponds. Froelich (1964) studied feeding behavior of European species and described how nymphs use their long palpi to sweep food from surrounding water. The body is much less flattened than that of other Heptageniidae nymphs.
Epeorus vitrea (Walker)

Synonomy.—Palingenia vitrea Walker (1853:555); Epeorus humeralis Morgan (1911:105); Iron vitrea Speith (1940:330); Epeorus vitrea Burks (1953:195).

Adult and nymphal descriptions.—Leonard and Leonard (1962).

Absence of a median caudal filament readily separates nymphs from other Heptageniids, except Spinadis. They can be distinguished from Spinadis by large platelike gills and a lack of dorsal tubercles. The gills are held against the substrate to form an incomplete adhesive disc, but are not as enlarged as those of Rhithrogena nymphs. The long first protarsal segment distinguishes adults.

Genus HEPTAGENIA Walsh

Five species have been found in Wisconsin. Nymphs and adult males are easily identified by characters given in the key, but female adults are difficult to separate from Stenonema. Association with adult males, and in some cases structures of the chorion of the eggs (Koss, 1968), are the only reliable means for identifying females.

Heptagenia diabasia Burks

Synonomy.—Heptagenia diabasia Burks (1946:610).

Adult and nymphal descriptions.—Burks (1935).

Closely related to elegantula of western United States, nymphs (Fig. 383 in Burks, 1953) can be recognized by their dorsal color pattern and dark submarginal stripes on the abdominal venter.

Heptagenia flavescens (Walsh)

Synonomy.—Palingenia flavescens Walsh (1862:373); Heptagenia flavescens Walsh (1863:197).

Adult and nymphal descriptions.—Burks (1953).

Nymphs somewhat resemble diabasia, but pale markings on the abdominal terga are more extensive (Fig. 384 in Burks, 1953) and submarginal black bars on the abdominal venter are missing. Adults are recognized by the dorsal abdominal stripe.

Heptagenia hebe McDunnough

Synonomy.—Heptagenia hebe McDunnough (1924b:122).

Adult and nymphal descriptions.—Burks (1953).

One of two small species of Heptagenia in Wisconsin, it is abundant throughout its range. At first glance, nymphs might be mistaken for small Stenonema, but the proportionally large head and the Gill structure are distinctive.

Heptagenia lucidipennis (Clemens)

Synonomy.—Ecdyurus lucidipennis Clemens (1913:329); Heptagenia lucidipennis McDunnough (1924a:118).

Adult and nymphal descriptions.—Burks (1953).

Like hebe, this is a small mayfly. Nymphs have been confused with hebe, but characters in the key provide for reliable separation. Adult lucidipennis can be recognized by their brown bodies.

A “summer” mayfly, small nymphs first appear in late spring, followed by rapid development until emergence in late June. Most other Wisconsin Heptageniidae are
"winter" species; nymphs appear in autumn, develop slowly through the winter, and emerge the following spring.

Heptagenia pulla (Clemens)

Synonomy.—Ecdyurus grandis Clemens (1913:147) (Nomen nudum); Ecdyurus pullus Clemens (1913:330); Heptagenia pulla McDunnough (1924b:120).

Adult and nymphal descriptions.—Burks (1953).

Nymphs closely resemble diabasia, but their ranges do not overlap in Wisconsin. They have been found only in Lake Superior at 50 m (Selgeby, 1973), northern Lake Michigan, and tributary streams thereof. On the Door County shore of Green Bay they are found on rocks near shore, where they grow to an unusually large size.

Genus RHITHROGENA Eaton

Nymphs have gills expanded to form an adhesive disc (Fig. 390 in Burks, 1953). We have found large numbers only in clean, swift water with a substrate of small rounded stones less than three inches in diameter. On these smooth stones the disc can be used to best advantage. Nymphs are active, and when disturbed, move quickly to cover. Adult Rhithrogena, except for pellucida, can be separated only by male genitalia. Like Epeorus, this genus is predominantly western.

Rhithrogena impersonata (McDunnough)

Synonomy.—Heptagenia impersonata McDunnough (1925:191); Rhithrogena impersonata McDunnough (1926:195); Rhithrogena sanguinea Ide (1954:349).

Adult description.—Needham et al. (1935).

Nymphal description.—Ide (1954).

Nymphs can be recognized by a low rounded process dorsally on the gills (Fig. 3B), and by a dark, round or horizontally elongate dark spot on the femora (Fig. 3J).

The form sanguinea was originally described as a separate species. Typical nymphs differ from impersonata in having bright red gills, light reddish-brown body color, and in lacking the dark spot on the femora (Fig. 3I). However, we have found many nymphs that combine impersonata and sanguinea characters; a dark body color and rust colored gills. All sanguinea forms have pale, rusty gills when young; the bright red color appears as nymphs near maturity. The length of spines on the outer edge of the male genitalia has been used to separate adults of the two forms. Although we have been able to rear only eight males of the two forms, we have found this character variable. Sanguinea lives in the same riffles and emerges at the same time as impersonata. In view of these conditions, we do not feel that sanguinea merits species status.

Rhithrogena jejuna Eaton

Synonomy.—Baetis fusca Walker (1953:568); Rhithrogena jejuna Eaton (1885:252).

Adult description.—Needham et al. (1935).

Nymphal description.—length of body, 10 mm, tails, 6.5 mm. Head dark greenish-brown, pale line from outer corner of eye to lateral margin. Antennae greenish-brown at base, growing pale toward apex. Maxillae with eight pectinate spines on crown and 31-32 lateral setae. Pronotum greenish-brown with a pale spot at each anterior corner. Mesonotum and wingpads greenish-brown; pale line on midline of notum. Femora with greenish-brown margins and pale center; a dark brown vertical bar or triangular spot in center of the pale area (Fig. 3G). Tibia dark greenish-brown, pale at 'tip. Tarsus greenish-brown, pale at apical and basal ends. Claws with a single basal tooth. Dorsum of abdomen dark greenish-brown, ninth and tenth terga occasionally paler; venter...
greenish-yellow often darker along midline. Gills translucent white, first and seventh pairs expanded and meeting under the body, dorsal margins lacking projections. Tails greenish-brown.

The lack of a process on the dorsal gill margin (Fig. 3A) and vertical femoral spots distinguish nymphs from those of other Rhithrogena.

Rhithrogena pellucida Daggy

Synonymy.—Rhithrogena pellucida Daggy (1945:383).

Adult and nymphal descriptions.—Daggy (1945).

The light spot on the tip of the nymph’s abdomen, given by Daggy as a distinguishing characteristic, is useful for living specimens, but in alcohol the contrast diminishes, and specimens of jejuna show a similar light area. Thus, femoral patterns are more useful in identifying preserved material. Adults of both sexes of pellucida can be identified by the colorless wing veins.

Rhithrogena undulata (Banks)

Synonymy.—Epeorus undulatus Banks (1924:425); Rhithrogena undulata McDonnough (1926:195).

Adult description.—Needham et al. (1935).

Nymphal description.—Edmunds (1952).

Nymphs resemble impersonata, but can be recognized by narrow, dorsal thumb-like projections on the gills. R. undulata appears to be confined to sandstone streams of northern Bayfield County, which often carry heavy loads of red clay silt and differ geologically from southern parts of the county where other Rhithrogena are found.

Genus SPINADIS Edmunds and Jensen

Spinadis sp.

Only four nymphs of this unusual animal (Fig. 2) have been collected, all from the Wisconsin River in June 1973 after the water had been unusually high all winter. Gut contents of one specimen contained chironomid head capsules, indicating that this mayfly is predaceous. Edmunds (pers. comm.) has examined two specimens and has concluded that they belong to the newly erected genus Spinadis Edmunds and Jensen (1974), and are closely related to S. wallacei from the Altamaha River of Georgia and the White River of Indiana. We suspect that the Wisconsin Spinadis is a different species, but lack of adult material precludes any definite conclusions.

Genus STENACRON Jensen

This genus was recently erected (Jensen, 1974) for Stenonema species formerly known as the interpunctatum group. A single very common and highly variable species, Stenacron interpunctatum, occurs in Wisconsin. Many forms have been described as separate species, notably heterotarsale, canadense and frontale, but Spieth (1947) found numerous intermediate forms and concluded that they are at best subspecies. We have not attempted to differentiate subspecies since their taxonomy is still unsettled.

Stenacron interpunctatum (Say)

Synonymy.—Baetis interpunctata Say (1839:41); Stenonema interpunctatum Traver (1933:175); Baetis canadensis Walker (1853:569); Ecdyonurus heterotarsale (McDunnough (1933:42); Stenonema affine Traver (1933a:184); Stenonema conjunctum Traver (1935:309); Stenonema ohioense Traver (1935:322); Stenonema proximum Traver (1935:325); Heptagenia frontalis Banks (1910:199); Stenonema majus Traver (1935:320); Stenonema arelon Burks (1953:163); Stenacron interpunctatum Jensen (1974:225).
Adult and nymphal descriptions.—Spieth (1947).

Nymphs can be recognized at any size by their pointed gills. A black dash below the bulla of the fore wing separates adults from Heptagenia and Stenonema.

Genus STENONEMA Traver

This is the largest genus of Heptageniidae in the eastern United States, reaching its greatest diversity in the Appalachian Mountains (Berner, 1950). To date, we have found nine species in Wisconsin.

Burks (1953) regards species of Stenonema as the most difficult Ephemeroptera to identify, because male genitalia, in contrast to other heptageniids, are very similar in most species. The penes are membranous L-shaped organs that carry only a few small spines and can easily be distorted when mounted. Color patterns of adults, although somewhat variable, are used to separate most species.

Wisconsin Stenonema can be reliably identified from adult males and mature nymphs, since many of the confusing forms do not occur in Wisconsin. The taxonomic treatment used in this paper is based in part on Lewis (1974b).

Stenonema bipunctatum (McDunnough)

Synonomy.—Ecdyonurus bipunctatus McDunnough (1926:191); Stenonema bipunctatum Traver (1935:306).

Adult description.—Burks (1953).

Nymphal description.—Lewis (1974b).

Insufficient adult males have been obtained for inclusion in the adult key. Adult females have paired black dashes on the abdomen. Nymphs resemble terminatum, but can be distinguished by the dark posterior half of the ninth sternum (Fig. 4C). The crown of the maxilla has setae that vary greatly in number, some individuals having only a single seta on one maxilla (Fig. 1N). Young nymphs have more extensive pale markings than mature nymphs and they also have a row of dark spots down the mid-line of the abdominal terga (Fig. 4G). As nymphs mature, these spots become less prominent due to darkening of surrounding areas.

Stenonema exiguum Traver

Synonomy.—Stenonema exiguum Traver (1933a:201); Stenonema alabamae Traver (1937:79).

Adult description.—Traver (1933a).

Nymphal description.—Daggy (1945).

Mature nymphs are easily recognized by markings on the thoracic nota (Fig. 3K), but small nymphs lack this feature. Very small nymphs are dark brown above and pale beneath. As they grow, pale markings on the seventh abdominal tergum appear, followed by the other markings in successive moults. The distinctive thoracic pattern is not visible until the wingpads have achieved about half their length. The abdominal venter remains unmarked except for the lateral margins of the ninth sternum (see Stenonema rubrum).

Lewis (1974a) described Stenonema quinquespinum from Ohio and designated as paratypes an adult male and nymph from the Clam River in Burnett County, Wisconsin. We are unable to distinguish the nymph from those of exiguum. The discal spine on the genitalia of the adult is smaller than figured for the holotype, and a nymphal exuviae associated with this adult is probably that of bipunctatum. A series of reared specimens is needed to determine the status of quinquespinum and its relationship to exiguum and bipunctatum in Wisconsin.
Stenonema fuscum (Clemens)

Synonomy.—Heptagenia fusca Clemens (1913:254); Ecdyonurus rivulicola McDunnough (1933:40); Stenonema fuscum Traer (1933a:174).

Fig. 6. Distribution of Stenonema in Wisconsin. Marks represent county records.
Adult and nymphal descriptions.—Burks (1953).

Dark bands on the abdominal venter are present even on very small nymphs, making this one of the more readily identifiable Stenonema. Markings on the ninth sternum range from a complete band (Fig. 4A) to two lateral dots. Although nymphs marked as in Fig. 4A will key to Stenonema vicarium in Burks (1953), Lewis (pers. comm.) has found that on the basis of adult characters, vicarium does not occur west of the Appalachian Mountains. Banded Wisconsin nymphs are the subspecies rivulicolum, thought by Burks to be a form of vicarium, but now considered by Lewis to be a subspecies of fuscum.

Stenonema integrum (McDunnough)

Synonomy.—Heptagenia integer McDunnough (1924:9); Stenonema bellum Traver (1933a:202); Stenonema integrum Traver (1933a:175); Stenonema wabasha Daggy (1945:378); Stenonema metriotes Burks (1953:174).

Adult description.—Burks (1953).

Nymphal descriptions.—Daggy (1945), Lewis (1971).

Nymphs are easily recognized by the pale spearhead mark on the abdominal venter, which is present (although sometimes reduced) in all specimens we have seen. They are identical to nymphs Daggy (1945) described as wabasha, which was synonomized with integrum by Burks (1953), and are much darker than nymphs of integrum described by Lewis (1971).

Stenonema mediopunctatum (McDunnough)

Adult and nymphal descriptions.—Lewis (1974b).

The striped abdominal venter and U-shaped mark on the ninth sternum separate nymphs from other Stenonema. These markings are present, although often very faint, in the youngest nymphs we have collected.

Stenonema pulchellum (Walsh)

Synonomy.—Palingenia pulchella Walsh (1862:375); Stenonema pulchellum Traver (1933a:175).

Adult and nymphal descriptions.—Burks (1953).

Found only in northwestern and southeastern Wisconsin, these mayflies appear to be rare. We have collected only mature nymphs and they resemble rubrum, to which pulchellum is closely related, differing only in markings on the abdominal venter. Adult characters in the key are from Burks (1953) and Lewis (1974b).

Stenonema rubrum (McDunnough)

Synonomy.—Heptagenia flavescens-nec Walsh Clemens (1913:252); Ecdyonurus ruber McDunnough (1926:192); Stenonema rubrum Traver (1933a:190); Stenonema varium Traver (1933a:192).

Adult and nymphal descriptions.—Burks (1953).

Larger nymphs are easily recognized by the U-shaped mark on the ninth sternum and the single median dot on the eighth sternum. Very small nymphs lack these marks and are very difficult to distinguish from young exiguum. In general, rubrum nymphs are lighter, and markings on the femora tend to form alternating light and dark bands, rather than random patterns as in exiguum. These characters are not foolproof and only rearing or continual sampling will positively identify many populations. Fortunately, rubrum nymphs acquire their distinguishing marks while still relatively small.
Stenonema terminatum (Walsh)

Synonomy.—Palingenia terminata Walsh (1862:375); Stenonema terminatum Traver (1933a:175).

Adult description.—Burks (1953).

Nymphal description.—Lewis (1971).

Nymphs have only recently been described. Young nymphs, unlike most other Stenonema species, have more extensive pale markings than mature specimens (Fig. 4F, compare with Lewis, 1971, Plate III). Young specimens have pectinate claws; however, the pectines become reduced as the nymphs mature, and are completely lacking in the last nymphal instar. Reared adults have two black dashes on the abdominal terga. Young nymphs and adults of Wisconsin terminatum will key to bipunctatum in Burks (1953).

Stenonema tripunctatum (Banks)

Synonomy.—Heptagenia tripunctata Banks (1910:199); Stenonema femoratum tripunctatum (Banks) Spieth 1947:99; Stenonema tripunctatum Burks (1953:168).

Adult and nymphal descriptions.—Burks (1953).

Spieth (1947) considered this a subspecies of Stenonema femoratum, but Lewis (1974b) believes that both femoratum and tripunctatum are good species.

Nymphs can be recognized by their rounded gills and a pair of round brown dots on abdominal sternum 2-8.

The only Wisconsin Stenonema that occurs regularly in lakes, we encountered it most often in lentic waters; in streams it occurs in areas of slower current. On the Door County shore of Green Bay, it lives on rocks near shore where it grows to unusually large size. In Lake Superior it has been found at 32 m (Selgeby, 1974). This species is bivoltine in the Little Suamico River, adults emerging in May and again in late August. Clemens (1913) found tripunctatum to be single-brooded in Georgian Bay; however, Plessot (1951) showed that variations in climate can have drastic effects on life cycles of Heptageniidae.

LITERATURE CITED

1954. The nymph of Rhithrogena impersonata (Ephemeroptera) and a new closely related species from the same locality in southern Ontario. Can. Entomol. 86:348-356.

