
Valparaiso University Valparaiso University 

ValpoScholar ValpoScholar 

Graduate Academic Symposium Graduate School 

Spring 4-29-2021 

Framework for Deep Reinforcement Learning Experimentation Framework for Deep Reinforcement Learning Experimentation 

HarishGupta Lingam 
harishgupta.lingam@valpo.edu 

Follow this and additional works at: https://scholar.valpo.edu/gas 

Recommended Citation Recommended Citation 
Lingam, HarishGupta, "Framework for Deep Reinforcement Learning Experimentation" (2021). Graduate 
Academic Symposium. 82. 
https://scholar.valpo.edu/gas/82 

This Oral Presentation is brought to you for free and open access by the Graduate School at ValpoScholar. It has 
been accepted for inclusion in Graduate Academic Symposium by an authorized administrator of ValpoScholar. For 
more information, please contact a ValpoScholar staff member at scholar@valpo.edu. 

https://scholar.valpo.edu/
https://scholar.valpo.edu/gas
https://scholar.valpo.edu/grad
https://scholar.valpo.edu/gas?utm_source=scholar.valpo.edu%2Fgas%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.valpo.edu/gas/82?utm_source=scholar.valpo.edu%2Fgas%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@valpo.edu


Framework for Deep Reinforcement Learning Experimentation

Harish Gupta Lingam, Spring 2021

In recent years deep learning obtained astonishing results in pattern recognition, computer

vision, natural language processing, and other complex problems. Recent research shows that

deep learning can be combined with reinforcement learning to solve complex problems. Deep

reinforcement learning(DRL) revolutionized AI by creating an autonomous system with a higher

level of understanding of the visual world. Some Real world applications are self driving cars

and control policy of robots by only taking camera input. However, a major limitation of such

applications is they require massive amounts of training data and are very slow to learn the task.

The present objective is thus to develop a deep RL agent that can adapt rapidly to new tasks

using recent reseach. To develop this agent, I created a modular framework in which various

combinations of RL algorithms, different training strategies, and configurations of neural

networks are trained. To test these deep reinforcement learning(DRL) systems, we generally use

simulated environments and games(we can not initially test this system in the real world). In this

project I will be using OpenAI Gym’s environment and games to test the DRL systems. Detailed

log files and results are preserved in a uniform format that permits analysis and comparison of

learning performance and performance playing the video game. By this analysis, the agent is

built with the best performing combination of RL algorithms, neural network configuration, and

training strategies. This gives a single set of hyperparameters that will perform well in different

environments and can be extended to real world applications like self driving cars and robotics.

Playing the games is a Markov Decision Process, where time is modeled by discrete intervals

and the game moves from state to state partially in response to the agent and partly randomly.

The agent receives state information from the "world" (the game it is trying to play). The agent

produces an action (controls something in the game), then receives back a reward value (which

can be negative) and the new state of the game. A key part of reinforcement learning is

recurrence equations which allow rewards to be propagated backward. The agent may not get

much reward until it wins or loses. If at time 10 the game is won, for example, then that reward

is propagated backward to inform future choices for the intermediate states times 9, 8, 7, etc

which later resulted in the win. The agent then plays another game. Sometimes it "exploits''

(picks the best move in a given situation based on prior experience) and sometimes "explores"



(picks a random move, exploring new paths which may result in improving the model. Iterating,

exploiting and exploring, and accumulating the backward learned rewards for all the

intermediate states. The agent will learn to perform a sequence of actions in a given environment

to maximize the reward.

A little more formally, at each time step agent takes an action based on the policy ,π(𝑎
𝑡
|𝑠

𝑡
)

where st is the current state and at the action taken. The environment reacts with the next state st+1

and reward rt+1. The goal is to improve policy to maximize the overall reward . To improve the

policy, I have used Q-Learning. Q-Learning is based on the action-value function (or Q-function)

of a policy, Q(s, a). Q-function measures the expected reward from state s by taking action a. A

naive learning function would simply remember for each state the best-move-learned-so-far,

along with its expected reward. The Q function remembers an expected reward from each

possible action from a given state. Q is thus a "dynamic programming" algorithm. It remembers

a polynomial amount of expected reward information to optimize learning over a combinatorial

large number of possible paths of actions and states.

The Deep Q-Network algorithm was developed by Google DeepMind in 2015, it was able to

play a wide range of Atari games by combining the deep neural network and Q-learning

algorithms. To estimate the Q-values the neural network is trained. By minimizing the neural

network loss Q-values are improved.

For setting up the environment, I have used OpenAI gym Library, which contains a list of

game environments. This library is mainly used as a standard benchmark test for reinforcement

learning algorithms. In OpenAI gym, the state of the game environment can be extracted in two

forms. One form is parameterized information such as the position and velocity of a game object.

The other possible way to extract the state is as a raw pixel image, the image that a human player

would see and react to. I have used raw image input. To process these images, convolutional

layers are added to neural networks to digest useful information out of the image.

The framework was written in Python, using PyTorch and individual loadable modules. In

the framework, different configurations and parameters of the neural network, training strategies,

and even different RL algorithms can be easily changed. Detailed log file of episodes (with

rewards, # of time steps, loss) created. The framework allows me to use the same code for

different environments. Thus the same agent configurations can play different games. Also, it's



easy to compare the performance between different configurations.

Using this framework I am able to determine the network configuration, training strategies,

and reinforcement learning parameters which work well generically across multiple games.

Using this results(hyperparameters) can be extended to autonomous systems and robotics which

is outside scope of this project.

References:

1. Miguel Morales. (2020). Grokking Deep Reinforcement Learning book.

2. Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,

Daan Wierstra, Martin Riedmiller. (2013). Playing Atari with Deep Reinforcement

Learning paper. https://arxiv.org/abs/1312.5602


	Framework for Deep Reinforcement Learning Experimentation
	Recommended Citation

	HarishAbstractSpring2021f_revised.docx

