Spring 2012

Modeling of Early SIV/HIV Infection

Krista Schaefer
Valparaiso University

Cecilia Noecker
Valparaiso University

Kelly Zaccheo
Valparaiso University

Vitaly Gunasov
Valparaiso University

Judy Day
Valparaiso University

See next page for additional authors

Follow this and additional works at: https://scholar.valpo.edu/cus
🔗 Part of the [Mathematics Commons](https://scholar.valpo.edu/cus) and the [Microbiology Commons](https://scholar.valpo.edu/cus)

Recommended Citation

Schaefer, Krista; Noecker, Cecilia; Zaccheo, Kelly; Gunasov, Vitaly; Day, Judy; and Yang, Yiding. "Modeling of Early SIV/HIV Infection" (2012). *Symposium on Undergraduate Research and Creative Expression (SOURCE).* 112.
https://scholar.valpo.edu/cus/112

This Oral Presentation is brought to you for free and open access by the Office of Sponsored and Undergraduate Research at ValpoScholar. It has been accepted for inclusion in Symposium on Undergraduate Research and Creative Expression (SOURCE) by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at scholar@valpo.edu.
Authors
Krista Schaefer, Cecilia Noecker, Kelly Zaccheo, Vitaly Gunasov, Judy Day, and Yiding Yang

This oral presentation is available at ValpoScholar: https://scholar.valpo.edu/cus/112
Modeling of Early SIV/HIV Infection

Krista Schaefer, Cecilia Noecker, Kelly Zaccheo, Vitaly Ganusov, Judy Day, Yiding Yang

Departmental Affiliation: Mathematics and Microbiology
College of Arts and Sciences

Although HIV has infected over 20 million people worldwide, it is a rather poorly transmitted virus since less than 1 out of 100 to 1,000 acts of sexual intercourse results in virus transmission. The factors that could potentially explain why the probability of transmission is so small are poorly understood. It is nearly impossible to study HIV replication in the first 2-3 weeks of infection because the virus is undetectable until after that duration. By using stochastic simulations of mathematical models of early virus replication, we investigate how the duration of the eclipse phase prior to virus production (eclipse stage) affects the probability of infection of the host and time to the detectable virus load for simian immunodeficiency virus (SIV) infection of monkeys. The probability of infection strongly depends on the dose of the infectious agent and the viral production mechanism that is used, and there are significant differences in times to infection between the deterministic and stochastic models. We show that our model consistently predicts the time to virus detection in macaques infected with a low dose of SIV. However, the model fails to accurately predict the dependence of the probability of SIV infection on the initial viral dose in monkeys. Our results suggest that additional mechanisms must be considered for understanding early virus dynamics, in particular, spatial distribution and the turnover of CD4+ T cells, which are primary targets for the virus.

Information about the Authors:
Krista Schaefer participated in a REU project at the National Institute of Mathematics and Biological Synthesis at the University of Tennessee, Knoxville. Her collaboration team met there with adjunct professors from the university and peer researchers from St. Olaf and Scranton University. She enjoys math modeling of biological systems.

Faculty Sponsor: Dr. Vitaly Ganusov and Dr. Judy Day

Student Contact: krista.schaefer@valpo.edu