First-Principles Calculations of Electronic and Transport Properties of Nanowires

John Shen
john.shen@valpo.edu

Follow this and additional works at: https://scholar.valpo.edu/sires

Recommended Citation
https://scholar.valpo.edu/sires/77

This Poster Presentation is brought to you for free and open access by the Office of Sponsored and Undergraduate Research at ValpoScholar. It has been accepted for inclusion in Summer Interdisciplinary Research Symposium by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at scholar@valpo.edu.
First-Principles Calculations of Electronic and Transport Properties of Nanowires

John Shen

Research Advisors: Prof. Haiying He (Valparaiso University); Prof. Ravindra Pandey (Michigan Technological University)

Abstract

The goal of this research is to find out the electronic structure and transport property of nanowires (NWs) that we are interested in. As Moore’s law is faltering, scientists are trying to use different methods to continue to increase computer’s computing power like using carbon nanotubes or quantum transistors. In the spirit of this, semiconducting nanowires constituted of atomic units and choices of ligands are proposed to mimic the functions of transistors to achieve the goal of increasing computing power. Electronic structure and electron transport calculations have been conducted based on the density function theory and the non-equilibrium Green’s function (NEGF) method to show the effect of ligands on the nanowire.

Computational Methods

For the electronic structure calculation:
- Density Functional Theory
 - Gaussian 09
 - Exchange correlation functional: PBE
- Basis sets: 6-31G(d,p)
- Molecular orbital (MO)

For the electron transport calculation:
- Non-Equilibrium Green’s Function (NEGF) method
 - Siesta / TranSiesta
 - Exchange correlation functional: PBE
 - Basis sets: DZP with pseudopotential
 - Transmission function
 - Projected density of state (PDOS)
 - Local density of state (LDOS)

Results

Schematic illustration of transport setup: nanowire structure with and without a ligand

HOMO and LUMO of a NW with no ligand

Projected HOMO and LUMO of a NW with one ligand

Effect of Ligand: HOMO-LUMO gap chart as the number of ligands increases

<table>
<thead>
<tr>
<th>Ligand</th>
<th>HOMO (Left)</th>
<th>LUMO (Left)</th>
<th>HOMO (Right)</th>
<th>LUMO (Right)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP0</td>
<td>-4.57</td>
<td>-3.10</td>
<td>-4.57</td>
<td>-3.10</td>
</tr>
<tr>
<td>EP1</td>
<td>-4.03</td>
<td>-2.49</td>
<td>-4.59</td>
<td>-3.00</td>
</tr>
<tr>
<td>EP2</td>
<td>-3.46</td>
<td>-1.88</td>
<td>-4.52</td>
<td>-3.01</td>
</tr>
<tr>
<td>EP3</td>
<td>-3.04</td>
<td>-1.57</td>
<td>-4.43</td>
<td>-2.98</td>
</tr>
<tr>
<td>EP4</td>
<td>-2.68</td>
<td>-1.25</td>
<td>-4.19</td>
<td>-2.65</td>
</tr>
</tbody>
</table>

Conclusions

Based on electronic structure calculations, there are three properties of the nanowire is found:
- First, the nanowire structures are stable;
- Second, adding ligands makes the MOs localized;
- Third, increasing the number of ligands decrease the HOMO-LUMO gap.

Based on electron transport calculations,
- For the one-ligand case, its current over 0 - 3 V is smaller than that of the no-ligand case, even though the HOMO-LUMO gap becomes smaller.
- For the two- or three-ligand case, the current becomes higher over certain voltages, which means the smaller HOMO-LUMO gap overcomes the drawback of localized molecular orbitals.