

Abstract

Non-decreasing sequences are a generalization of binary covering arrays, which has made research on non-decreasing sequences important in both math and computer science. The goal of this research is to find properties of these nondecreasing sequences as the variables d, s, and t change. The goal is also to explore methods for creating a maximum length non-decreasing sequence for a given strength and size set. Through our research, we discovered and proved basic properties of these non-decreasing sequences. In addition to this, we can describe a method we used while trying to find the maximum length of a sequence.

Definitions and Notation

- Let \boldsymbol{S} be a set of \boldsymbol{s} elements
- The **strength** of non-decreasing sequence is the amount of subsets whose union we consider, and is represented using **d**
- A non-decreasing sequence of strength d is a sequence of non-empty subsets, $\{S_1, S_2, \ldots, S_t\}$, where the union of any d previous subsets does not contain any subsequent subset
- The number of subsets in a non-decreasing sequence is called the **length**, *t*
- NDS(d,s,t) is the set of non-decreasing sequences with strength d, s elements and length t
- NDST(d,s) is the maximum t such that NDS(d, s, t) is non-empty
- Let r_i be the number of elements in the subset S_i

Binary Arrays

- Represent a non-decreasing sequence using an $s \times t$ binary array
- Rows represent elements of S
- Columns represent subsets of non-decreasing sequence

	S_i			S_1	S_2	S_2	S_{Λ}	S_{5}
1	0		1	$\frac{\sim 1}{1}$	$\frac{2}{0}$	$\frac{\sim 3}{0}$	$\frac{24}{0}$	$\frac{20}{1}$
:	:		2	0	1	0	0	1
κ		3	0	0	1	0	1	
: C			4	0	0	0	1	0
3	U							

Non-Decreasing Sequences **Alexander Bruno and Amy Klass Advisor: Dr. Jon Beagley**

Basic Results

Theorem 1-Permuting rows in a binary array gives another NDS(d, s, t). **Theorem 2-**If the union of any d subsets contain all elements in S, no subsets can be added to the sequence.

Theorem 3-Every subset in NDS(d, s, t) must be distinct for $d \ge 1$.

Theorem 4- $NDS(d, s, t) \subseteq NDS(d, s + 1, t)$ Corollary 5- $NDST(d, ks) \ge kNDST(d, s)$, where $k \in \mathbb{Z}$.

	S_1	S_2	S_3	S_4	S_5	
1	1	0	0	0	1	
2	0	1	0	0	1	
3	0	0	1	0	1	
4	0	0	0	1	0	
Δ						

Standard Sequence

Theorem 6-There exists an NDS(d, s, t) where the first s subsets are of size 1. We call this a **standard non-decreasing sequence**.

	1	2	3	4	5
1	1	0	0	0	0
2	0	1	0	0	0
3	0	0	1	0	0
4	0	0	0	1	0
5	0	0	0	0	1
:	:	:	:	:	:

Theorem 7-A standard non-decreasing sequence of strength d does not have any subsets of size $1 < r \leq d$.

Theorem 8- In a standard non-decreasing sequence, any subset S_i of size $r_i = d + 1$, may contain at most 1 element from any previous subset S_i .

Theorem 9-In a standard non-decreasing sequence, any subset S_j of size $r_j \ge d+1$ must contain at least d elements that differ from any previous subset S_i .

- - $|\mathbf{A}| \mathbf{0} |\mathbf{0}|$ 0 | A | 00 0 A

Block array

- for a given d, s

S	Lower Bound	Found Upper Bound	$2^{s} - 1$
1	1	1	1
2	2	2	3
3	4	4	7
4	5	5	15
5	7	7	31
6	11	13	63
7	15	20	127

- Effect of permuting columns

[1] J. Beagley, W.Morris, Chromatic numbers of copoint graphs of convex geometries, Discrete Math. 331 (2014) 151-157

[2] J. Lawrence, R. Kacker, Y. Lei, D. Kuhn, M. Forbes, A survey of binary covering arrays, Electron. J. Combin. 18 (2011).

Acknowledgements

MSEED Program sponsored by NSF (Grant No. 1068346) Valparaiso University Mathematics and Statistics Department and Professor Jon Beagley

Bounds

• Gives range for NDST(d, s)

• Lower bound is the length of sequence constructed

• Upper bound initially $2^s - 1$, number of nonempty subsets possible for any set S with s elements

• Upper bound decreased using Theorems 7, 8, and 9

Table 1: Bounds for d = 2

Future Work

• Find exact formula for NDST(d, s)• Find different computational methods

• Find relation to binary covering arrays

• Find bounds for larger d and s values

References