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Noise-Induced Stabilization of Perturbed
Hamiltonian Systems

Tiffany Kolba, Anthony Coniglio, Sarah Sparks,
and Daniel Weithers

Abstract. Noise-induced stabilization is the phenomenon in which the addition of randomness
to an unstable system of ordinary differential equations results in a stable system of stochastic
differential equations. With stability defined as global stochastic boundedness, Hamiltonian
systems can never be stabilized by the addition of noise that is constant in space. In this article,
we investigate how to deterministically perturb a class of unstable Hamiltonian systems in
such a way that the qualitative behavior is preserved, but that enables the systems to exhibit
noise-induced stabilization.

1. INTRODUCTION. A Hamiltonian system on R
2 is a system of ordinary differ-

ential equations (ODEs) of the form⎧⎪⎪⎨
⎪⎪⎩
dx(t)

dt
= ∂H

∂y
(x(t), y(t))

dy(t)

dt
= −∂H

∂x
(x(t), y(t)),

where H(x, y) ∈ C∞(R2) is called the Hamiltonian function. A key property of
Hamiltonian systems is that

dH

dt
= ∂H

∂x

dx

dt
+ ∂H

∂y

dy

dt
= ∂H

∂x

∂H

∂y
− ∂H

∂y

∂H

∂x
= 0, (1)

and hence the Hamiltonian function is constant along each solution curve. In appli-
cations, H typically represents the energy of the system and (1) indicates that H is a
conserved quantity.

Random perturbations ξx(t) and ξy(t) can be added to a Hamiltonian system to form
a system of equations of the form⎧⎪⎪⎨

⎪⎪⎩
dx(t)

dt
= ∂H

∂y
(x(t), y(t))+ ξx(t)

dy(t)

dt
= −∂H

∂x
(x(t), y(t))+ ξy(t).

A common approach is to model the random perturbations as Gaussian white noise,

setting ξx(t) = εx
dBxt
dt

and ξy(t) = εy
dB

y
t

dt
, where Bxt and Byt are independent Brownian

motions and εx and εy control the strength of the noise in the x- and y-directions,
respectively. Brownian motion can be defined as the unique stochastic process with
continuous paths whose increments are stationary, independent, and have mean zero.
These defining characteristics of Brownian motion make its derivative, the Gaussian
white noise process, a desirable model for random fluctuations, but the derivative of
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Brownian motion exists only in the sense of distributions [6, pp. 21–29]. Thus, it is
typical to write the resulting system of stochastic differential equations (SDEs) in the
form ⎧⎪⎪⎨

⎪⎪⎩
dXt = ∂H

∂y
(Xt, Yt )dt + εxdB

x
t

dYt = −∂H
∂x
(Xt, Yt )dt + εydB

y
t .

(2)

The system of SDEs is in fact shorthand for a system of integral equations, where
integration with respect to Brownian motion can be defined rigorously with the Ito
integral. The Ito integral is constructed analogously to the Riemann–Stieltjes integral,
but extended to the case of integrating with respect to Brownian motion, which does
not have bounded variation.

For any initial condition (X0, Y0) ∈ R
2, there exists a unique solution to (2) until the

possible time of explosion (i.e., when the solution tends to infinity in finite time) since
H is smooth, and hence its partial derivatives are locally Lipschitz continuous [6, pp.
68–69]. While there are many different notions of stability, we are interested here in a
notion of global stability of systems, which is given in the following definition.

Definition (Stable). A system is stable if, for all (X0, Y0) ∈ R
2 and for all δ > 0, there

exists a bound M such that P(|(Xt , Yt )| ≤ M) > 1 − δ for all t ≥ 0.

This definition of stable is often referred to as stochastic boundedness or bounded
in probability, and reduces to the standard definition of bounded when (Xt , Yt ) is
deterministic (i.e., when εx = εy = 0). We say that a system of ODEs exhibits noise-
induced stabilization if the ODE system is unstable but, after the addition of noise, the
corresponding SDE system is stable. This phenomenon of noise-induced stabilization
is quite intriguing since one’s first intuition is often that noise would only serve to
further destabilize a system, rather than have a stabilizing effect.

A classic example of noise-induced stabilization in one dimension involves the sim-
ple ODE

dx(t)

dt
= rx(t), (3)

whose solution x(t) = x(0)ert is stable when r ≤ 0, but unstable when r > 0. If we
randomly perturb the ODE with constant white noise to form the SDE

dXt = rXtdt + εdBt ,

then the solution is called the Ornstein–Uhlenbeck process and has the form

Xt = X0e
rt + εert

∫ t

0
e−rsdBs.

When ε �= 0, the stability classification of the Ornstein–Uhlenbeck process is almost
identical to that of the original ODE in that the process is still stable when r < 0 and
unstable when r > 0; however, the process is now also unstable when r = 0. Thus,
the addition of constant white noise is not sufficient to stabilize the ODE given in
equation (3). If we instead randomly perturb the ODE with noise whose magnitude
depends upon space to form the SDE

dXt = rXtdt + εXtdBt ,
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Figure 1. Simulation of geometric Brownian motion with r = 1 and ε = 1 (green),
√

2 (blue), 2 (red).

then the solution is called geometric Brownian motion. The explicit solution for geo-
metric Brownian motion is

Xt = X0e
(r− ε2

2 )t+εBt

and its three distinct possible behaviors are depicted in Figure 1. When ε2 < 2r , geo-
metric Brownian motion converges to plus or minus infinity with probability one.
When ε2 = 2r , the solution fluctuates between arbitrary large and arbitrary small val-
ues (or remains constant if ε = r = 0). Finally, when ε2 > 2r , the solution converges
to zero with probability one. Thus, geometric Brownian motion exhibits noise-induced
stabilization in the case where ε2 > 2r and r > 0 since the corresponding determinis-
tic system is unstable while the stochastic system is stable.

In [8], Scheutzow proved that a one-dimensional ODE that explodes in finite time
can never be stabilized by noise that is constant in space. Yet in two dimensions this
type of stabilization is possible, which has been demonstrated in several works [2,4,7].
The examples of noise-induced stabilization in the plane typically involve systems
where the regions in which the deterministic dynamics point outward toward infinity
are isolated, and the addition of white noise allows the solution to escape the unstable
regions into regions where the deterministic dynamics flow inward toward the ori-
gin. While it is possible to have noise-induced stabilization of two-dimensional sys-
tems with additive white noise, an unstable two-dimensional Hamiltonian system can
never be stabilized by noise that is constant in space. Due to the Hamiltonian structure,
Lebesgue measure will always be invariant, and hence the solution visits all points in
the plane with equal probability rather than remaining bounded with high probability.

In this article, we consider a class of unstable Hamiltonian systems and investigate
how to deterministically perturb them in such a way that the qualitative behavior of
the deterministic systems is preserved, but that enables the systems to exhibit noise-
induced stabilization. Section 2 describes the behavior and instability of the determin-
istic Hamiltonian and perturbed Hamiltonian systems under consideration. In Section
3, we show that the deterministically perturbed Hamiltonian systems do indeed exhibit
noise-induced stabilization by proving that the corresponding stochastic systems are
stable.
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2. DETERMINISTIC SETTING. We consider the class of Hamiltonian systems
with Hamiltonian function of the form H(x, y) = h(xmyn), where m, n ≥ 2 are inte-
gers and h ∈ C∞(R). We also assume that h′ is bounded away from zero, i.e., there
exists a > 0 such that |h′(t)| ≥ a for all t . For any Hamiltonian function of this form,
the corresponding system of ODEs is given by⎧⎪⎪⎨

⎪⎪⎩
dx

dt
= h′(xmyn)nxmyn−1

dy

dt
= −h′(xmyn)mxm−1yn

(4)

with initial condition (x(0), y(0)) = (x0, y0). We consider this particular class of
Hamiltonian systems due to its intriguing mathematical nature, which belies the sim-
ple structure of the Hamiltonian function; namely, every Hamiltonian system in the
class is unstable, but the qualitative behavior suggests that a small perturbation may
result in stabilization. The precise behavior of this class of Hamiltonian systems is
described in more detail below.

Withm, n ≥ 2, both axes consist of a continuum of equilibrium points. However, if
m = n = 1, the qualitative behavior is different since only the origin is an equilibrium;
more generally, at most one of the axes consists of a continuum of equilibria if m = 1
or n = 1, and hence we exclude this case. Due to the fact that the Hamiltonian function
is constant along each solution curve and the fact that our restrictions on h imply that
h is invertible, we know that x(t)my(t)n = xm0 y

n
0 for all t , and thus, for any initial

condition off the axes, y(t) = y0

∣∣ x0
x(t)

∣∣m/n.
The four possible phase portraits for the Hamiltonian systems with m = n are

depicted in Figure 2. While the shape of the solution curves is the same in all cases,
the direction of the arrows depends upon the sign of h′ and whether m = n is even
or odd. When m �= n, there is no longer symmetry in the shape of the solution curves
near the x- and y-axes, and there are more possible combinations for the directions of
the arrows due to different combinations of m and n being even or odd.

If m = n, the explicit solution to (4) is given by

{
x(t) = x0 exp[h′((x0y0)

n)n(x0y0)
n−1t]

y(t) = y0 exp[−h′((x0y0)
n)n(x0y0)

n−1t].

From the explicit solution, we can observe that for all initial conditions off the axes,
either limt→∞ |x(t)| = ∞ or limt→∞ |y(t)| = ∞. Thus, the deterministic Hamiltonian
system is unstable. The only effect of n is determining the precise exponential rate at
which the solution approaches one of the axes.

If m �= n, the explicit solution to (4) is not as obvious, but can be found by consid-
ering z(t) = x(t)m−1y(t)n−1, which satisfies the ODE

dz

dt
= h′(xmyn)(m− n)x2m−2y2n−2 = h′(xm0 y

n
0 )(m− n)z2. (5)

Solving the ODE in (5) yields

z(t) = xm−1
0 yn−1

0

1 − h′(xm0 y
n
0 )(m− n)xm−1

0 yn−1
0 t

. (6)

508 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 126



Figure 2. Possible phase portraits for the Hamiltonian systems with m = n.

When m = n, z(t) is a constant, but when m �= n we can plug the expression for z(t)
given in (6) into the system of ODEs given in (4) to find{

x(t) = x0(1 − h′(xm0 y
n
0 )(m− n)xm−1

0 yn−1
0 t)

−n
m−n

y(t) = y0(1 − h′(xm0 y
n
0 )(m− n)xm−1

0 yn−1
0 t)

m
m−n .

As in the case when m = n, we still observe that for all initial conditions off the
axes, either limt→∞ |x(t)| = ∞ or limt→∞ |y(t)| = ∞. However, when m �= n the
nature of the instability is stronger since there exist initial conditions for which the
solution actually blows up in finite time. In particular, the sign of

h′(xm0 y
n
0 )(m− n)xm−1

0 yn−1
0

determines the nature of the instability, with a positive sign corresponding to a solu-
tion that explodes in finite time and a negative sign corresponding to a solution that
simply wanders off to infinity. For example, if h′ > 0 and m > n with both m and n
even, solutions starting in the first or third quadrants have |x(t)| blowing up in finite
time, while solutions starting in the second or fourth quadrants have |y(t)| approaching
infinity at a rate of order t

m
m−n . If instead m < n, |y(t)| blows up in finite time in the

second and fourth quadrants, while |x(t)| approaches infinity at a rate of order t
n

n−m
in the first and third quadrants. These two cases are depicted in Figure 3, where the
quadrants that exhibit finite-time explosion correspond to the quadrants in which the
solution approaches the axis more quickly.
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Figure 3. Phase portraits for the Hamiltonian systems with h′ > 0, m �= n even.

Although the system given by (4) is unstable for any values of m and n, in the case
where m and n are even, as depicted in Figure 2(a) and (b) and in Figure 3, the system
possesses characteristics which may lead one to guess that it will exhibit noise-induced
stabilization. For the deterministic process, solutions remain in the quadrant in which
they start for all time, approaching infinity along one of the axes. In contrast, one might
guess that the addition of white noise will enable the stochastic process to cross the
axes and form a quasi-periodic orbit where the process continually traverses all four
quadrants in a clockwise motion if h′ > 0 or a counterclockwise motion if h′ < 0.

However, as mentioned in Section 1, Lebesgue measure is always invariant for a
Hamiltonian system with constant noise, and hence stabilization by constant noise is
not mathematically possible. Figure 4 displays a simulation of the Hamiltonian system
with constant noise (εx = εy = 1) added, in the case where m = n are even and the
initial condition is in the first quadrant. From the figure, one can observe that the noise
does indeed allow the process to traverse all four quadrants, but the system is still
unstable because the process still tends toward infinity along the axes. In fact, while
the figure displays only the range from (−200, 200), the simulation eventually results
in numerical overflow when run for a sufficient amount of time.

Figure 4. Simulation of the Hamiltonian system with constant noise added.
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Since the Hamiltonian system cannot be stabilized by constant noise, we seek to
deterministically perturb the system to break the Hamiltonian structure and allow for
noise-induced stabilization to occur. In order to choose the precise form for the deter-
ministic perturbation, we again consider the function z(t) = x(t)m−1y(t)n−1, which
was crucial for analyzing the mathematical behavior of the original Hamiltonian sys-
tem. We know from the expression derived in (6) that z(t) either always remains con-
stant (when m = n) or explodes in finite time for certain initial conditions (when
m �= n). However, in order for (x(t), y(t)) to cross the axes, z(t) must be able to
reach zero. Hence, our deterministic perturbation is constructed in order to give z(t)
an extra push toward zero, but without altering the set of equilibrium points of the orig-
inal Hamiltonian system. This desired effect is achieved with the following perturbed
system: ⎧⎪⎨

⎪⎩
dx

dt
= h′(xmyn)nxmyn−1 − (h′(xmyn))2nx2m−1y2n−2

dy

dt
= −h′(xmyn)mxm−1yn − (h′(xmyn))2mx2m−2y2n−1.

(7)

With this specific perturbation, z(t) now satisfies the following ODE:

dz

dt
= h′(xmyn)(m− n)z2 − (h′(xmyn))2(n(m− 1)+m(n− 1))z3. (8)

From equation (8), we can observe that the deterministic perturbation will preserve the
instability and essential limiting behavior of the original Hamiltonian system because
the new term involving z3 is not strong enough to enable z(t) to reach zero in finite
time. In the next section, we prove that the deterministic perturbation does indeed
allow the system to be stabilized by noise that is constant in space.

3. STOCHASTIC SETTING. We now consider adding white noise to the determin-
istically perturbed system given in (7) in order to form the system of SDEs that appears
in the theorem below.

Theorem 1. The system of SDEs{
dXt = [h′(Xm

t Y
n
t )X

m−1
t Y n−1

t − (h′(Xm
t Y

n
t )X

m−1
t Y n−1

t )2]nXtdt + εxdB
x
t

dYt = [−h′(Xm
t Y

n
t )X

m−1
t Y n−1

t − (h′(Xm
t Y

n
t )X

m−1
t Y n−1

t )2]mYtdt + εydB
y
t

exhibits noise-induced stabilization; i.e., the system is unstable when εx = εy = 0, but
is stable whenever εx �= 0 and εy �= 0.

We have already shown the instability of the deterministic system when εx = εy = 0
in Section 2, so in order to prove Theorem 1, it remains to show that the stochastic sys-
tem with εx �= 0 and εy �= 0 is stable. Figure 5 shows simulations of the stochastic sys-
tem with εx = εy = 1 andm = n. The simulations provide visual evidence of stabiliza-
tion since, rather than converging to infinity along one of the axes, the solutions remain
bounded. The reason for the different shapes in Figure 5 is apparent by comparison
with the corresponding phase portraits of the original Hamiltonian systems depicted in
Figure 2. When m and n are even, there is symmetry along the x- and y-axes since the
deterministic drift points either clockwise (when h′ > 0) or counterclockwise (when
h′ < 0). However, when m and n are odd, the deterministic drift points either outward
in the x-direction (when h′ > 0) or outward in the y-direction (when h′ < 0). Figure 6
displays a simulation of the stochastic system with εx = εy = .001, h′ > 0, andm = n
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Figure 5. Simulations of the stochastic system with εx = εy = 1, m = n.

even, zoomed in about the origin, where the clockwise quasi-periodic motion starting
from initial condition (.1, .1) is more easily visible.

Figure 6. Simulation of the stochastic system with εx = εy = .001, h′ > 0, m = n even.
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To rigorously prove stability of the stochastic system, we use the well-known result
that the existence of a global Lyapunov function satisfying the definition below implies
that the system is stable [5].

Definition (Lyapunov function). A function V (x, y) is a local Lyapunov function on
R ⊂ R

2 if it satisfies

1. V ∈ C∞(R),
2. lim

r→∞

[
inf

(x,y)∈(R∩Bcr )
V (x, y)

]
= ∞,

3. lim
r→∞

[
sup

(x,y)∈(R∩Bcr )
(LV )(x, y)

]
= −∞,

where Bcr is the complement of the ball of radius r about the origin and L is the
generator corresponding to the system. If R = R

2, we say that V (x, y) is a global
Lyapunov function.

Note that the generator L of a stochastic process (Xt , Yt ) is defined by

(LV )(x, y) = lim
t→0

E(x,y)[V (Xt, Yt )] − V (x, y)

t
,

where E(x,y)[·] denotes the expected value starting from point (x, y). Hence, the gen-
erator describes the expected movement of the stochastic process in an infinitesimal
time interval. When applied to functions V that are twice continuously differentiable,
the generator can be represented as a second-order partial differential operator [6, pp.
121–124]. In particular, the generator corresponding to the system of SDEs considered
in Theorem 1 is given by

L = [(h′(xmyn)xm−1yn−1)− (h′(xmyn)xm−1yn−1)2]nx
∂

∂x
+ ε2

x

2

∂2

∂x2

+ [(h′(xmyn)xm−1yn−1)− (h′(xmyn)xm−1yn−1)2]my
∂

∂y
+ ε2

y

2

∂2

∂y2
.

Dynkin’s formula states that

E(x,y)[V (Xt, Yt )] = V (x, y)+ E(x,y)

[∫ t

0
(LV )(Xs, Ys)ds

]
,

and this formula gives intuition for why the conditions in the definition of a global
Lypaunov function imply stability. The condition that (LV )(Xs, Ys) tends toward
negative infinity as the magnitude of (Xs, Ys) approaches infinity ensures that
E(x,y)[V (Xt, Yt )] is bounded above by V (x, y) for large initial conditions (x, y). Yet,
because of the condition that V (Xt, Yt ) approaches positive infinity as the magnitude
of (Xt , Yt ) approaches infinity, the magnitude of (Xt , Yt ) itself must be stochastically
bounded, which is our definition of stable in this context.

Generally, showing the existence of a Lyapunov function can be quite ad hoc and
tedious. However, we apply the systematic method developed in [2] in order to con-
struct local Lyapunov functions on various regions of the plane and then patch them
together to form one smooth, global Lyapunov function.
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y

x

Figure 7. Decomposition of plane into priming and diffusive regions.

We begin by decomposing the plane into the following regions:

R1 = {(x, y) : |x|m−1|y|n−1 ≥ c},
R2 = {(x, y) : |x|m−1|y|n−1 ≤ 2c, |x| ≥ 1},
R3 = {(x, y) : |x|m−1|y|n−1 ≤ 2c, |y| ≥ 1},

where c > 0. The precise value of the constant c will be specified later to facilitate
local Lyapunov function constructions and patching. The three regions, R1,R2,R3,
cover the entire plane, minus some ball about the origin, and are depicted in Figure 7
in the case of m = n. R1 is the “priming region” where a natural Lyapunov function
exists, namely the norm to some power, which we prove in Lemma 2. R2 and R3

are “diffusive regions” where the deterministic dynamics are unstable and noise is
essential to the existence of local Lyapunov functions, which we prove in Lemma 3.
In Lemma 4, we prove that the local Lyapunov functions can be smoothed together on
the overlap regions in such a way that the Lyapunov properties are preserved.

Lemma 2. For any c > 1
a
, v1(x, y) = x2 + y2 is a local Lyapunov function on R1.

Proof. v1 clearly satisfies the first two properties of a local Lyapunov function, so it
only remains to show the third property. Applying the generator to v1, we obtain

(Lv1)(x, y) = 2nx2[(h′(xmyn)xm−1yn−1)− (h′(xmyn)xm−1yn−1)2] + ε2
x

+ 2my2[−(h′(xmyn)xm−1yn−1)− (h′(xmyn)xm−1yn−1)2] + ε2
y .

Setting u = |h′(xmyn)||x|m−1|y|n−1, we have

(Lv1)(x, y) ≤ 2(nx2 +my2)(u− u2)+ ε2
x + ε2

y .

Now u − u2 is negative and strictly decreasing for u > 1. Recall that the constant
a > 0 defined in Section 2 is a lower bound for |h′|, and hence, |h′(xmyn)| ≥ a for all
(x, y). Thus, we can choose c > 1

a
so that u − u2 ≤ ac − (ac)2 < 0 for all (x, y) ∈

R1. This bound ensures that Lv1 converges to negative infinity, and therefore v1 is a
local Lyapunov function on R1.

On the diffusive regions R2 and R3, we construct the local Lyapunov functions v2

and v3 as solutions to a boundary-value problem of the form{
(L̃ivi)(x, y) = wi(x, y) for (x, y) ∈ Ri

vi(x, y) = ṽi(x, y) for (x, y) ∈ ∂Ri ,
(9)
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where L̃i consists of the terms in the generator L that scale dominantly in the region
Ri , wi is chosen so that limr→∞

[
sup(x,y)∈(Ri∩Bcr ) wi(x, y)

] = −∞, and ṽi is asymp-
totic to v1 on the boundary of Ri . This method can be viewed as “propagating” an
obvious Lyapunov function to regions of the plane where a Lyapunov function is not
obvious.

In R2, the dominant term in the generator is L̃2 = ε2
y

2
∂2

∂y2 . For simplicity, we

choose ṽ2(x, y) = x2 and w2(x, y) = −k2ε
2
yx

2 with k2 > 0. Likewise, in R3, the

dominant term in the generator is L̃3 = ε2
x

2
∂2

∂x2 , and we choose ṽ3(x, y) = y2 and
w3(x, y) = −k3ε

2
xy

2 with k3 > 0. With these choices, we can find explicit solutions to
the boundary-value problem described by (9), which are given in the lemma below.

Lemma 3. For any c > 0,

v2(x, y) = x2(1 − k2y
2)

with k2 >
n

2ε2
y

is a local Lyapunov function on R2 and

v3(x, y) = y2(1 − k3x
2)

with k3 >
m

2ε2
x

is a local Lyapunov function on R3.

Proof. v2 and v3 clearly satisfy the first two properties of a local Lyapunov function on
their respective regions since R2 consists of a decaying strip about the x-axis and R3

consists of a decaying strip about the y-axis. Applying the generator to v2 we obtain

(Lv2)(x, y) = 2nx2(1 − k2y
2)[(h′(xmyn)xm−1yn−1)− (h′(xmyn)xm−1yn−1)2]

− 2mk2x
2y2[−(h′(xmyn)xm−1yn−1)− (h′(xmyn)xm−1yn−1)2]

+ ε2
x(1 − k2y

2)− ε2
yk2x

2.

Setting u = |h′(xmyn)||x|m−1|y|n−1, we have

(Lv2)(x, y) ≤ 2nx2(u− u2)+ 2k2(n+m)x2y2(u+ u2)

+ ε2
x(1 − k2y

2)− ε2
yk2x

2.

Since R2 consists of the decaying strip around the x-axis, the terms with x2 will dom-
inate in Lv2. Hence, we need to ensure that the net sign of the coefficient of the x2

terms is negative. Now the maximum of u − u2 occurs at u = 1
2 and is equal to 1

4 .
Thus, if we choose k2 >

n

2ε2
y
, then Lv2 will converge to negative infinity in R2. The

proof that Lv3 converges to negative infinity in R3 is analogous.

Remark. Due to the nature of the deterministic dynamics, it is the noise in the y-
direction, εy �= 0, that is crucial to the existence of a local Lyapunov function in R2

and it is the noise in the x-direction, εx �= 0, that is crucial to the existence of a local
Lyapunov function in R3. Thus, in order to obtain a global Lyapunov function on the
entire plane, noise is needed in both the x- and y-directions.

Since we have shown the existence of local Lyapunov functions on regions covering
the entire plane, minus some ball about the origin, we now seek to patch them together
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to form one smooth, global Lyapunov function. Since the local regions overlap, the
straightforward approach is to construct convex combinations of the form

vij (x, y) = φ(r(x, y))vi(x, y)+ (1 − φ(r(x, y)))vj (x, y)

on the overlap regions such that φ(r(x, y)) is a smooth function with φ(r(x, y)) = 0
on one border and φ(r(x, y)) = 1 on the other. In particular, we set

r(x, y) = |x|m−1|y|n−1 − c

c
and

φ(t) =
∫ t

−∞ ψ(s)ds∫ ∞
−∞ ψ(s)ds

where ψ(t) =
{

exp
(

−1
1−(2t−1)2

)
for 0 < t < 1

0 otherwise.

The mollifier φ(r(x, y)) ensures that the convex combinations vij satisfy the first
two local Lyapunov properties (i.e., the smoothness and growth conditions) on the
appropriate overlap regions. However, it is not guaranteed that the convex combina-
tions will satisfy the third local Lyapunov property since additional terms result after
the application of the generator. In Lemma 4, we prove that for appropriate choice of
constants, our convex combinations are indeed local Lyapunov functions on the over-
lap regions.

Lemma 4. There exists c > 1
a

such that for any k2 >
n

2ε2
y
,

v12(x, y) = φ(r(x, y))v1(x, y)+ (1 − φ(r(x, y)))v2(x, y)

is a local Lyapunov function on

R1 ∩ R2 = {(x, y) : |x| ≥ 1, c ≤ |x|m−1|y|n−1 ≤ 2c},
and for any k3 >

m

2ε2
x
,

v13(x, y) = φ(r(x, y))v1(x, y)+ (1 − φ(r(x, y)))v3(x, y)

is a local Lyapunov function on

R1 ∩ R3 = {(x, y) : |y| ≥ 1, c ≤ |x|m−1|y|n−1 ≤ 2c}.

Proof. Applying the generator to v12 we obtain

(Lv12)(x, y) = φ(r(x, y))(Lv1)(x, y)+ (1 − φ(r(x, y)))(Lv2)(x, y)

+ L[φ(r(x, y))](v1(x, y)− v2(x, y))

+ ε2
x

∂

∂x
[φ(r(x, y))]

∂

∂x
[v1(x, y)− v2(x, y)]

+ ε2
y

∂

∂y
[φ(r(x, y))]

∂

∂y
[v1(x, y)− v2(x, y)].

From the proofs of Lemmas 2 and 3, on R1 ∩ R2 with c > 1
a
,

φ(r(x, y))(Lv1)(x, y)+ (1 − φ(r(x, y)))(Lv2)(x, y) ≤ D(x, y),
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where D(x, y) ∼ 2n(ac − a2c2)x2. From explicit computation, the remaining terms
in Lv12 are less than or equal to E(x, y) on R1 ∩ R2, where

E(x, y) ∼ k2ε
2
y(8(n− 1)+ 2(n− 1)(n− 2)+ 16(n− 1)2)x2.

The above asymptotic expression for E(x, y) results from using the fact that |φ′(t)| ≤
2 and |φ′′(t)| ≤ 8 for all t . Hence,

(Lv12)(x, y) ≤ D(x, y)+ E(x, y)

∼ [2n(ac − a2c2)+ k2ε
2
y(8(n− 1)+ 2(n− 1)(n− 2)+ 16(n− 1)2)]x2.

Since the coefficient of x2 is a quadratic function of c with leading term −2na2c2, we
can choose c sufficiently large so that the coefficient of x2 is negative. This result then
implies that Lv12 converges to negative infinity in R1 ∩ R2. The proof for Lv13 in
R1 ∩ R3 is analogous.

Our global Lyapunov function, V (x, y) ∈ C∞(R2), can now be constructed so that

V (x, y) =
{
Ṽ (x, y) for x2 + y2 > ρ2

arbitrary positive and smooth for x2 + y2 ≤ ρ2,

where ρ ≥ 4c and

Ṽ (x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

v1(x, y) for (x, y) ∈ R1 ∩ Rc
2 ∩ Rc

3

v2(x, y) for (x, y) ∈ Rc
1 ∩ R2 ∩ Rc

3

v3(x, y) for (x, y) ∈ Rc
1 ∩ Rc

2 ∩ R3

v12(x, y) for (x, y) ∈ R1 ∩ R2 ∩ Rc
3

v13(x, y) for (x, y) ∈ R1 ∩ Rc
2 ∩ R3.

The existence of this global Lyapunov function implies that the perturbed Hamiltonian
system with noise is indeed stable for any εx �= 0 and εy �= 0 and completes the proof
of Theorem 1.

4. CONCLUDING REMARKS. While in this article we have shown how to deter-
ministically perturb a class of Hamiltonian systems so that they exhibit noise-induced
stabilization, the deterministic perturbation that we constructed is certainly not unique.
For example, our dx

dt
perturbation had the form

−nx(h′(xmyn)xm−1yn−1)2

but any perturbation of the form

−nx(h′(xmyn)xm−1yn−1)q

with q a positive even integer, along with a corresponding dy

dt
perturbation, would also

result in enabling noise-induced stabilization. An interesting open question is whether
there exists in some rigorous sense a “minimal” perturbation that would most closely
preserve the behavior of the original Hamiltonian system, but allow for noise to have
a stabilizing effect.
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Furthermore, in this article we have only considered noise with constant coeffi-
cients, but one could also explore allowing the strength of the noise to depend upon
space, such as in [1,3]. In the case of nonconstant noise, it may be possible for the class
of Hamiltonian systems to exhibit noise-induced stabilization without a deterministic
perturbation.
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