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Abstract— In this paper we asked the question: if we artificially 

raise the variability of torque control signals to match that of 

EMG, do subjects make similar errors and have similar 

uncertainty about their movements? We answered this question 

using two experiments in which subjects used three different 

control signals: torque, torque+noise, and EMG. First, we 

measured error on a simple target-hitting task in which subjects 

received visual feedback only at the end of their movements. We 

found that even when the signal-to-noise ratio was equal across 

EMG and torque+noise control signals, EMG resulted in larger 

errors. Second, we quantified uncertainty by measuring the just-

noticeable difference of a visual perturbation. We found that for 

equal errors, EMG resulted in higher movement uncertainty than 

both torque and torque+noise. The differences suggest that 

performance and confidence are influenced by more than just the 

noisiness of the control signal, and suggest that other factors, such 

as the user’s ability to incorporate feedback and develop accurate 

internal models, also have significant impacts on the performance 

and confidence of a person’s actions. We theorize that users have 

difficulty distinguishing between random and systematic errors 

for EMG control, and future work should examine in more detail 

the types of errors made with EMG control.  

 
Index Terms—EMG, myoelectric control, uncertainty, upper 

limb prosthesis, uncertainty  

 

 

I. INTRODUCTION 

YOELECTRIC control is non-invasive and widely used for 

human-machine interfaces, but performance is far from 

able-bodied standards [1] and inferior to able-bodied control 

interfaces such as joint torque or joint angle [2], [3]. The 

decoded electromyographic (EMG) signals used in myolectric 

control are highly variable, and this variability is thought to be 

a major performance limitation of EMG as a control signal [4]. 

Many research efforts focus on improving filters and algorithms 

to lower the variability of EMG control signals (e.g. [5]). 

However, other factors also make EMG control difficult, such 
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as the lack of direct biological feedback and the lack of 

experience modulating EMG to use as an explicit control input. 

EMG is often simply compared against other control signals, 

with no way of knowing how each of those factors affect 

performance. We need to clarify the influence of control signal 

variability on performance with EMG control. 

The relationship between EMG amplitude and generated 

torque has been well studied and several excellent reviews are 

available (e.g. [6]). In certain circumstances, for example 

during isometric contractions, the EMG amplitude is 

proportional to muscle torque, so the two signals represent 

similar movements. However, the variability of EMG signals is 

not filtered through tissue and muscle redundancies. Instead, 

the stochastic patterns of EMG signals are sent to the control 

system, which may transmit variability through to movements. 

Furthermore, when measured from the skin’s surface, the EMG 

interference signal is comprised of only a subset of active motor 

units. Thus EMG control signals have higher variability than 

corresponding torque control signals, which likely contributes 

to the larger errors that users make when using EMG control.  

Errors are often caused by unexpected control signal 

variability, but may also come from other factors, many of 

which are common to both EMG control and torque control. 

However, there are two differences that may affect 

performance: 1) users do not have feedback on EMG signals in 

the same way they do with muscle torque, through either 

efference copy or local feedback loops, and 2) users do not have 

as much experience explicitly modulating EMG amplitude, 

whereas torque is often modulated to accomplish everyday 

tasks.  In this paper we seek to determine if variability alone can 

explain the increased errors with EMG, as compared to torque 

control. 

Increased error generally causes increased uncertainty, 

which affects the user’s behavior and ability to improve 

performance. Movement uncertainty, or how confident the user 

is of movement outcomes, is typically inferred through 

observing adaptation and error behaviors. Scientists manipulate 
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feedback variance [7], [8] or motor variance [9], [10], and 

observe how movement behavior changes in response. In this 

experiment we dissociated error and uncertainty, and explicitly 

quantified uncertainty by measuring the just noticeable 

difference of a visual perturbation. 

We measured the user’s uncertainty in movement predictions 

using a two-alternative forced choice (2AFC) technique [11]. 

This technique is used extensively to quantify feedback 

uncertainty [12] and shows promise for quantifying 

feedforward uncertainty [13]. In a 2AFC paradigm, the subject 

is given two options and must decide which is correct. In our 

specific task, the subject makes two movements. Visual 

feedback is only given at the movement endpoints and is 

visually perturbed on one of the movements. The subject must 

decide which movement was perturbed. This task measures 

how precisely the subject estimates movement distance.  The 

size of the visual perturbation is adjusted using an adaptive 

staircase pattern [14], [15]. When the subject answers correctly, 

the perturbation size decreases; when the subject answers 

incorrectly, the perturbation size increases. The staircase hones 

in on the threshold at which the subject can detect a 

perturbation, called the Just Noticeable Difference (JND), 

which serves as a measure of movement uncertainty. 

In this study we raised the variability of torque control 

signals to match that of EMG, and assessed the effect on error 

and uncertainty. Does matching the control signal variability 

across torque and EMG equalize any performance differences? 

Here we studied the movement performance and corresponding 

movement uncertainty during use of three control interfaces in 

a virtual dynamic environment: torque (low variability), EMG 

(high variability), and torque+noise (variability manipulated to 

match that of EMG). We measured variability of each control 

signal, observed the average errors during the target-directed 

task, and quantified movement uncertainty by measuring the 

JND of visual perturbations. 

 

II. METHODS 

A. Subjects 

Eighteen able-bodied subjects completed this experiment, 

which was approved by the Northwestern University 

Institutional Review Board (7 female, 11 male; between the 

ages of 23 and 34). 

 

B. Protocol 

Subjects sat comfortably in front of a computer display 

screen (Fig. 1). They used isometric elbow extension to move a 

cursor clockwise around a circular single degree-of-freedom 

track. The starting position was held fixed at 180 degrees on the 

left-hand side of the screen. 

 

Target Task 

For each trial, subjects began moving the cursor when a GO 

signal appeared on the screen. They were allowed 3 seconds to 

complete the movement. The end of the trial was triggered 

when subjects brought the cursor to a stop. If they did not end 

the movement within the allotted time, a TOO SLOW signal 

appeared on the screen and the trial was not counted. Subjects  

were instructed to end the movement as close to the target as 

possible. The target position was drawn from a uniform 

distribution across the right-hand side of the screen (between  

-45 and +45 degrees).  

To focus on feedforward variability and feedforward 

uncertainty, as opposed to feedback, visual feedback was taken 

away during each movement and returned at the end of the trial. 

For a training phase (first 10 trials), subjects were given visual 

feedback on cursor position throughout the movement. The 

training phase gave subjects information to form estimates of 

the task dynamics and variability. For the testing phase (last 75 

trials), the cursor disappeared after 15 degrees of movement and 

reappeared at the end of the movement to show subjects the 

cursor endpoint. Thus during the testing phase, subjects had to 

rely on feedforward predictions to successfully complete this 

“reaching in the dark” task, instead of relying on visual 

feedback throughout the movement. 

 

2AFC Task 

Immediately after the target-testing task for each control 

interface, subjects began the 2AFC testing. Each trial was 

composed of two movements. For each movement, subjects 

moved to the right-hand side of the circle over the course of 

three seconds, without aiming for a displayed target.  The cursor 

was visible only for the first 15 degrees of movement and 

reappeared at the end of movement to display the cursor 

endpoint. Subjects were instructed beforehand that one of the 

two movements would be perturbed visually in the clockwise 

direction, and that their job was to decide which of the two 

movements was perturbed (movements were perturbed in only 

one direction to maintain a standard 2AFC paradigm—the 

MSSM design [11]). 

 

C. Control Interface  

Subjects used each of the three control interfaces (torque, 

torque+noise, and EMG) in the same session with a randomized 

order. For each control interface, the target task was performed 

 

Fig. 1.  Experimental setup for EMG and torque control interfaces. The 

elbow was immobilized in a brace. Isometric elbow extension torque and 

EMG signals were mapped to clockwise movement of the cursor around the 

circular track.   
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first, immediately followed by the 2AFC task. Each subject 

completed all three protocols in one sitting, but were not told 

which control interface they were using.  

Subjects placed their arm in an elbow brace that minimized 

movement (ProCare Elbow RANGER Motion Control, 

modified). Isometric torque about the elbow was measured by 

a reaction torque sensor (Futek TFF40). EMG activity of elbow 

extensors was measured by a self-adhesive bipolar electrode 

(Delsys Bagnoli) placed over the lateral head of the triceps 

brachii. The lower arm portion of the brace was fixed to a 

horizontal link that coupled to the shaft of the torque sensor. 

The upper arm portion of the brace was fixed to the housing of 

the torque sensor. 

A calibration was performed to set the gains of each control 

interface. Subjects exerted isometric elbow extension torque 

and held the muscle contraction at a series of low, medium, and 

high effort levels. Each contraction was held for 5 seconds and 

each effort level was repeated 3 times. The average mean 

absolute value (MAV) of the medium effort level was used to 

set the gains so that effort was equalized between torque and 

EMG control (note that the medium MAV did not set a ceiling 

for control signals, instead only a benchmark for the average 

effort needed to complete a movement). EMG signals were 

high-pass filtered at 0.1 Hz, rectified, low-pass filtered at 5 Hz, 

and normalized to the MAV recording during calibration. 

Torque signals were low pass filtered at 5Hz and normalized. 

To create the torque+noise condition, additive and 

multiplicative white random Gaussian noise was added to the 

raw torque signal. At the surface of the muscle, EMG can be 

modeled as Gaussian noise with additive and multiplicative 

components [5]. We recreated these Gaussian noise sources, 

based on measured EMG properties, and added them to torque 

control signals for the torque+noise condition. The standard 

deviation of additive noise was set according to the baseline 

standard deviation of EMG signals during the calibration. The 

standard deviation of multiplicative noise was proportional to 

control signal amplitude. The torque+noise signal was then 

low-pass filtered at 5 Hz and normalized. 

For all three interfaces, processed control signals were 

mapped to cursor angle with the following transfer function 

(given in the Laplace frequency domain representation): 

 
𝜃(𝑠)

𝑢(𝑠)
=

1250

𝑠2+11𝑠
 . (1) 

 

Eq. 1 represents the dynamic relationship between the 

subject’s control input and the cursor movement—a 

relationship that was designed to imitate a clinical EMG filter 

for powered upper limb prostheses [16]. Particular values were 

chosen to emulate the dynamics of a typical prosthetic arm—

the LTI Boston DigitalTM elbow [17] in velocity control mode 

[4].  

The control interface was designed to focus on the question 

at hand: how does control signal variability affect error and 

uncertainty? Thus, we tested only one degree of freedom to 

minimize the confounding effects of coordination and tuning a 

multi degree of freedom control system. We used elbow 

extension as the control movement to give EMG signals the best 

possible chance at performing similarly to torque signals: a 

large muscle with minimal crosstalk from nearby muscles. 

Data are available from the Dryad Digital Repository: 

http://doi.org/10.5061/DRYAD.80150. 

 

III. ANALYSIS 

A. Target Task  

Signal-to-noise ratio (SNR) was measured in the normalized 

processed control signals (Fig. 2) with rest intervals between 

trials removed. SNR was calculated as the mean of the 

processed control signal divided by the standard deviation [18]. 

A higher SNR indicates a signal with less variability, or a 

cleaner signal.  

We used repeated-measures general linear models to test for 

differences between mean SNR and mean error across control 

interfaces. For the mean SNR test, SNR was the within-subjects 

factor and control interface (torque, torque+noise, EMG) was 

the between-subjects factor. For the mean error test, error was 

the within-subjects factor and control interface was the 

between-subjects factor. The mean error test was performed 

twice: once for the mean error of all trials, and once for the 

mean error of the last 10%, or 8 trials (to study the practiced 

performance at the end of the experiment). Significance was 

assessed at α=0.05 and Bonferroni corrections were applied for 

all post-hoc comparisons. Analyses were processed with IBM 

SPSS Statistics for Windows (IBM Corp., Armonk, N.Y., 

USA).  

 

 

Fig. 2.  Representative processed control signals for torque, torque+noise, 

and EMG. Four representative trials are shown for each control signal. 

Because the end of the trial was triggered by subjects bringing the cursor to 

a stop, trial lengths varied slightly. Intervals between trials, in which subjects 

were generally at rest, were removed from this plot and from the data used to 

calculate SNR. Normalized processed control signals are plotted from 0 to 1, 

where 1 indicates the mean absolute value (MAV) calculated during the 

medium effort level of the calibration. 
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B. 2AFC Task  

The perturbation size was determined by an adaptive 

staircase that targeted the 75% JND [14], [19]: 

 

𝑥(𝑛 + 1) = 𝑥(𝑛) −
𝐶

𝑛𝑠ℎ𝑖𝑓𝑡+1
[𝑧(𝑛) − 𝜙] . (2) 

 

where 𝑥 is the perturbation magnitude, 𝑛𝑠ℎ𝑖𝑓𝑡 is the number of 

reversals, 𝜙 is the target probability, 𝑧 is the subject’s decision 

(𝑧 = 1 when correct and 𝑧 = 0 when incorrect) and 𝐶 is the initial 

step size (set to 0.5𝜎, where 𝜎 is the spread of the psychometric 

curve). Here we used staircase parameters of 𝜎=40 degrees (set 

by the spread of the psychometric curve calculated from pilot 

testing), 𝐶 = 20 degrees, 𝜙 =0.75, and ran the staircase until the 

subject reached 25 reversals (Fig. 3). The resulting JND was 

used to quantify feedforward uncertainty. 

We used a repeated measures general linear model to test if 

JND was the same between control interfaces. To assess JND 

as a function of mean error for each control interface, we used 

a general linear model with JND as the dependent factor, mean 

absolute error (of the last 10% of the experiment, which was 8 

trials) as a continuous covariate, control interface as a fixed 

factor, and subject as a random factor. The mean error of the 

last 8 trials was used as the best estimate of each subject’s error: 

this block of trials occurs after the subject has had plenty of 

practice with the control interface, and right before the JND 

measurement test. Significance was assessed at 𝛼=0.05 and 

Bonferroni corrections were applied to post-hoc comparisons. 

Analyses were performed using SPSS Statistics. 

 

IV. RESULTS 

In this study, we investigated how increased control signal 

variability affected the ability of subjects to hit a target in a 

virtual environment with limited visual feedback. Three control 

signals were each used to perform the same protocol: torque, 

torque+noise, and EMG. Performance was evaluated by 

measuring the error between target and cursor at the end of each 

movement. 

 

A. Target Task  

The artificial variability added to torque signals in the 

torque+noise condition lowered the signal-to-noise ratio (SNR) 

(Fig. 4). The SNR of torque control signals was significantly 

higher than both torque+noise and EMG (p<.01), and no 

significant difference was found between the SNR of 

torque+noise and EMG (p>0.05). A higher SNR indicates less 

variability—in other words, a cleaner signal. The difference in 

SNR was most pronounced at medium and high levels of 

control signal amplitude (Fig. 5). A frequency spectrum 

analysis shows that the frequency content of torque+noise and 

EMG is similar across the frequency range of interest (Fig. 6).  

These results indicate that we achieved our goal of recreating 

the variability of EMG in a torque control interface. Thus, we 

are able to independently study how EMG control influences 

error, while accounting for control signal variability.  

However, subjects performed the task with significantly 

larger errors when using EMG control than either torque or 

torque+noise (p<.05, Fig. 7). Torque control resulted in the 

lowest error. By the last 10% of each protocol (8 trials), the 

mean error of torque control had significantly decreased from 

22.2 degrees to 18.5 degrees, suggesting that subjects learned 

how to improve their performance when using torque. In 

contrast, the mean error of EMG control tended to actually 

increase by the last 10% of the experiment—although this 

difference was not statistically significant. 

 

B. 2AFC Task  

The JND was highest when using EMG control, followed by 

torque+noise, followed by torque (Fig. 8). The JND measured 

during EMG control was significantly higher than that of both 

torque and torque+noise (p<0.01). There was no significant 

difference in JND between torque and torque+noise, although 

torque+noise tended to result in higher JND values.  

JND increased proportionally with mean absolute error, for 

all three control interfaces (Fig. 9). The factors that influence 

JND were assessed using a mixed effects general linear model. 

Mean absolute error was a continuous covariate, meaning that 

JND varied linearly with mean error, with an estimated slope of 

0.53 +/- 0.10 deg/deg.  

For equivalent errors, EMG result in higher JND than either 

torque or torque+noise (Fig. 9). Control interface was a fixed 

factor in the general linear model, meaning that torque, 

torque+noise, and EMG affected the intercept of the JND vs 

Error curve. Torque and torque+noise control resulted in 4.88 

+/- 2.23 and 4.57 +/- 2.11 deg/deg, respectively. 
 

 

Fig. 3.  Representative adaptive staircase used to find the Just Noticeable 

Difference (JND). The top plot shows that perturbation size was adjusted with 

the adaptive staircase pattern (Eq. 2), which depends on if the subject detects 

the perturbation correctly (blue circle) or incorrectly (red circle). The 

staircase pattern continues until the subject makes 25 reversals. A reversal is 

when the staircase changes directions—i.e., when the subject decision 

(bottom plot) switches between a correct choice and an incorrect choice, or 

vice versa. 
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Fig. 4.  The signal-to-noise ratio (SNR) of 

EMG and torque+noise were not 

significantly different. The SNR of torque 

was significantly higher than both 

torque+noise and EMG (**) indicates 

p<0.01. A higher SNR indicates less 

variability (a cleaner signal). Bars show 

standard errors of the mean. 

Fig. 5.  The SNR of torque+noise is similar to 

or lower than that of EMG across the entire 

amplitude of control signals used. Amplitude 

was normalized to the MAV of the medium 

level contraction during the calibration. Bars 

show standard errors of the man. 

Fig. 6.  The magnitudes of the torque+noise and EMG 

signals are similar across the entire frequency range 

of 0-50 Hz. Above the human movement frequencies 

(~5Hz), the magnitude of torque is less than both 

torque+noise and EMG, indicating lower noise levels. 

Magnitude spectra were computed with a fast Fourier 

transform. 

 
 

Fig. 7.  EMG control resulted in significantly larger errors than torque+noise control. Torque 

control resulted in significantly smaller errors than both torque+noise and EMG. Left plot 

shows the average across-subjects error throughout the entire experiment. Right plot shows the 

average across-subjects error during the last 8 trials, or 10%, of the experiment. (*) indicates 

p<0.05, (**) indicates p<0.01 for a repeated measures general linear model with Bonferroni 

corrections. 

Fig. 8.  EMG caused larger Just Noticeable 

Difference (JND) than torque+noise. Larger JND 

indicates higher feedforward uncertainty. 

 

V. DISCUSSION 

We studied the influence of control signal variability on 

EMG performance by comparing three control interfaces: 

torque, torque+noise, and EMG. For all three interfaces, we 

measured movement error during a target-hitting task and 

quantified movement uncertainty by measuring the just-

noticeable difference of a visual perturbation. 

We found that even when variability was equal across EMG 

and torque+noise control signals, EMG resulted in larger errors 

during the task (Fig. 7). This result suggests that control signal 

variability does not fully explain increased errors with EMG. 

One reason might be that the user has internal feedback loops 

to provide information about generated torque (e.g. Golgi 

tendon organs), and does not have the same feedback 

information for decoded EMG amplitude. Another reason 

might be that users have less experience using EMG as a control 

signal. In sum, the increased variability did increase error size, 

but users still made the largest errors using EMG control. 

EMG caused larger JND than torque and torque+noise at 

equivalent error levels (Fig. 9). Because JND served as our 

measure of movement uncertainty, we suggest that subjects 

were more uncertain of their movement endpoints when using 

EMG control. This increase in uncertainty with EMG can also 

be attributed to less feedback and less experience. Thus, 

subjects made larger errors and were more uncertain of their 

movements with EMG control, even when accounting for the 

effect of control signal variability. 

One theory behind the increased errors and uncertainty of 

EMG is that users have difficulty distinguishing between 

random and systematic errors [20]. In response to random 

variability, the optimal strategy is correct slowly to the average 



1534-4320 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2016.2598095, IEEE
Transactions on Neural Systems and Rehabilitation Engineering

> TNSRE-2015-00373.R1 < 

 

6 

error over many previous trials [10]. But EMG control may 

introduce more inconsistencies that make these decisions more  

difficult [21], [22]. Subjects in this experiment may have 

inappropriately responded to random variability: we see that 

performance with EMG control does not improve over the 

experiment, but if anything deteriorates (Fig. 7). This may be 

due to subjects overcorrecting to random variability and 

causing additional miscalibrations of their internal model. 

The difficulty of inconsistent control can be reduced by 

providing additional feedback information [22].  In our tasks, 

subjects were deprived of visual feedback during movements 

and could only see their endpoint error after movement 

completion. The only source of feedback for online error 

correction during the movement was from muscle spindle 

feedback loops or mechanoreceptors. The lack of visual 

feedback was designed to test feedforward predictions while 

using EMG control. In contrast, a previous study also compared 

EMG and torque control on a single-degree-of-freedom task, 

but provided visual feedback throughout the movement [23]. 

Interestingly, Corbett et al. found that EMG control performed 

similarly to torque control. The additional sensory feedback 

may have lowered feedback uncertainty, which allowed 

subjects to update feedforward predictions while still 

minimizing inappropriate corrections to random variability.  

Many typically assume that when a person performs a task, 

an increase in error proportionally increases the brain’s 

estimation of uncertainty [9], [24]–[26]. We also found that 

uncertainty (as measured by JND) increased as error increased; 

however, the baseline level of uncertainty was higher with 

EMG control (Fig. 9). Thus, the signal modality also caused a 

difference in uncertainty. This result is a reminder that although 

error is an important factor in determining uncertainty, other 

factors such as experience and feedback information should not 

be neglected. 

The variability added to torque was sufficient to recreate the 

SNR of EMG across a range of frequencies and muscle 

amplitudes, even during dynamic contractions (Fig. 4, Fig. 5, 

and Fig. 6). However, it is possible that SNR is not the best 

measure of the true noise in EMG – for example, the noise 

might be more Laplacian in nature than Gaussian [27].  The 

artificial noise added may also not precisely affect the non-

stationary nature of the EMG noise. In this experiment, 

however, these subtleties were likely mitigated by the interface 

dynamics (Eq. 1), which low-passed the noise and accordingly 

made it more Gaussian in nature due to the Central Limit 

Theorem. In addition, metrics only used end-point position, and 

users were only exposed to end-point position, adding another 

filter that again increased the Gaussian nature of the data. Thus, 

for the purposes of this experiment, it seems likely that a 

Gaussian model, which is commonly used in the field [28], was 

sufficient to explore user’s response to the inherently noisy 

EMG signals. In contrast, factors such as subtle posture shifts, 

fatigue [29], or skin impedance changes [30] may cause 

systematic changes in the control mapping, which users may 

still perceive as random errors. This study did not address 

systematic changes or a user’s ability to distinguish between 

systematic changes and random changes, although such 

exploration would be useful in the future. 

Users cannot perform as well with EMG interfaces as they 

can with torque interfaces [23]; even when aggressively 

filtered, EMG is a noisy control signal. Many groups have 

understandably focused on reducing the noisiness of the EMG 

control signal, using methods such as creating nonlinear filters 

(e.g., [31]). However, by applying recent advances in 

psychophysics and computational motor control paradigms to 

the field of myoelectric control, this study suggests that there is 

more to the story than the noisiness of the signal: even when the 

variability of the EMG signal is equalized, users still perform 

worse using EMG control than torque control. And even when 

we compare equal levels of performance, users are less 

confident using EMG control than torque control. These results 

suggest that the noisiness of the EMG control signal may not be 

the bottleneck in this field—it may be the type and fidelity of 

feedback, or the ability to form internal models, which in turn 

depends on the ability to distinguish between random and 

systematic errors.  

This work accordingly sets the foundation to focus attention 

elsewhere: specifically, on internal models and the ability of 

various types of feedback to strengthen those internal models. 

Although many feedback sources have failed to improve 

performance (e.g. [32]), recent research by others has 

demonstrated that providing feedback specifically targeted to 

enable better discrimination of internal models, such as 

explicitly providing the amplitude of the EMG signal as a form 

of vibratory feedback, have indeed improved performance [22]. 

This study demonstrates that other factors such as feedback and 

internal models play an important role in performance and 

uncertainty, and that these factors merit focused research in our 

field’s attempt to improve the control of myoelectric prostheses. 

In conclusion, there are difficulties inherent in EMG control 

beyond that of control signal variability. These difficulties 

 

Fig. 9.  JND increased as mean absolute error increased. EMG increased 

JND compared to torque and torque+noise (intercept of JND vs Error curve 

was significantly larger for EMG, p<0.05). No significant difference was 

found between the slopes of all three regression lines (p=0.21). Significance 

was assessed with a general linear model.  Points show subjects. 
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cause larger errors, which in turn cause higher feedforward 

uncertainty. To improve performance with EMG control, we 

need to compensate for these difficulties by providing either 

improved control systems, training methods, or feedback 

information to make control more predictable for the user. In 

future work we will seek to provide relevant feedback 

information that enables users to distinguish between 

systematic and random error. 
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