Propane Dehydrogenation Using Transition Metal Cluster Catalysts

Sarah E. Bradash
Valparaiso University, sarah.bradash@valpo.edu

Andrew D. Hoisington
Ivy Tech Community College - Valparaiso, andrew.hoisington1@gmail.com

Stan A. Zygmunt
Valparaiso University, Stan.Zygmun@valpo.edu

Louis Fadel
Ivy Tech Community College - Valparaiso, lfadel@ivytech.edu

Follow this and additional works at: https://scholar.valpo.edu/sires

Recommended Citation

https://scholar.valpo.edu/sires/58

This Poster Presentation is brought to you for free and open access by the Office of Sponsored and Undergraduate Research at ValpoScholar. It has been accepted for inclusion in Summer Interdisciplinary Research Symposium by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at scholar@valpo.edu.
Propane Dehydrogenation Using Transition Metal Cluster Catalysts
Sarah Bradash, Andrew Hoisington*, Louis Fadel*, Stan Zygmunt
Valparaiso University Department of Physics and Astronomy, *Ivy Tech Community College

Abstract
Our research seeks to determine the propane dehydrogenation (PDH) reaction pathways using various transition-metal cluster catalysts. We are studying the first step of the reaction, in which a C-H bond is broken. This has been previously shown to be the rate-limiting step of the PDH reaction. We are calculating the PDH activation energy (E_a) using the Vienna Ab-Initio Simulation Package (VASP) in conjunction with the nudged elastic band (NEB) algorithm. Thus far, we have studied Pt, Ta, and Ni clusters ranging in size from 2-10 atoms. Our goal is to better understand the dependence of E_a on metal type and cluster size.

Computational Procedure
- Use Vienna Ab-Initio Simulation Package (VASP) which implements density functional theory (DFT) to optimize the reactant and product structures
- Use the nudged elastic band (NEB) algorithm to calculate reaction pathways for the first step of PDH reaction: C-H bond cleavage
- Calculate E_a for each TM by subtracting the initial energy from the transition state energy

NEB Algorithm
- VASP implements DFT and the NEB algorithm to calculate minimum energy path between known reactants and products
- The NEB algorithm functions by adding spring forces along the band between images and by projecting out the component of the force due to the potential perpendicular to the band
- We use a total of 7 images (5 intermediate structures) to model the reaction path

NEB Calculation Procedure

Graphene-Supported Pt Clusters

Spin State Crossing
- Spin state crossing occurs in some structures
- Position at which the crossing occurs is currently unknown

Dependence of E_a on Cluster Size and ΔE

Conclusions
- E_a is dependent on spin state, metal type, and size of cluster
- Spin state crossing occurs for some clusters
- No clear dependence of E_a on ΔE exists for both Ni and Pt, contrary to BEP principle

Acknowledgements
- Indiana Space Grant Consortium
- Valparaiso University Dept. of Physics and Astronomy
- Prof. Zygmunt