

Propane Dehydrogenation Using Transition Metal Cluster Catalysts Sarah Bradash, Andrew Hoisington*, Louis Fadel*, Stan Zygmunt Valparaiso University Department of Physics and Astronomy, *Ivy Tech Community College

Abstract

Our research seeks to determine the propane dehydrogenation (PDH) reaction pathways using various transition-metal cluster catalysts. We are studying the first step of the reaction, in which a C-H bond is broken. This has been previously shown to be the ratelimiting step of the PDH reaction. We are calculating the PDH activation energy (E_a) using the Vienna Ab-Initio Simulation Package (VASP) in conjunction with the nudged elastic band algorithm. Thus far, we have studied Pt, Ta, and Ni clusters ranging in size from 2-10 atoms. Our goal is to better understand the dependence of E_a on metal type and cluster size.

Computational Procedure

- Use Vienna Ab-Initio Simulation Package (VASP) which implements density functional theory (DFT) to optimize the reactant and product structures
- Use the nudged elastic band (NEB) algorithm to calculate reaction pathways for the first step of PDH reaction: C-H bond cleavage
- Calculate E_a for each TM by subtracting the initial energy from the transition state energy

NEB Algorithm

- VASP implements DFT and the NEB algorithm to calculate minimum energy path between known reactants and products
- The NEB algorithm functions by adding spring forces along the band between images and by projecting out the component of the force due to the potential perpendicular to the band
- We use a total of 7 images (5 intermediate structures) to model the reaction path

NEB Calculation Procedure

- Ni₁₀ + C₃H₈ NEB Reaction Path -93.10 -93.70 -93.90 -94.10 Image Number
- Each structure was initially optimized as an isolated TM cluster, then a propane molecule was added to begin NEB calculation
- Each NEB calculation maps the energetic pathway of the first step of the PDH reaction (C-H bond cleavage)
- Our goal: calculate E_a and investigate correlations with reaction energies and TM characteristics

E_a varies according to cluster size, but not in a linear fashion No linear relation between E_{a} and ΔE ; Bell-Evans-Polanyi (BEP) principle does not hold for these results

Graphene-Supported Pt Clusters

Cluster	∆E (eV)	E _a (eV)	Pt-Pt (Å)
Pt	0.15	0.75	
Pt ₂	-0.06	0.51	2.362
Pt ₃	-0.95	0.46	2.503, 2.587
Pt ₄	-0.16	0.08	2.580, 2.642, 2.773
Pt ₆	-0.34	0.45	2.491, 2.606, 2.660

- No clear trend between E_a and ΔE
- E_a depends on cluster size and is a minimum for Pt₄
- Local geometry of interacting Pt

Spin State Crossing

Conclusions

- contrary to BEP principle

Acknowledgements

- Indiana Space Grant Consortium
- Prof. Zygmunt

atom may influence catalytic activity

- Spin state crossing occurs in some structures
- Position at which the crossing occurs is currently unknown

E₂ is dependent on spin state, metal type, and size of cluster • Spin state crossing occurs for some clusters • No clear dependence of E_a on ΔE exists for both Ni and Pt,

• Valparaiso University Dept. of Physics and Astronomy