Double-Spin Asymmetry in Neutral Pion (π^0) Production in Longitudinally Polarized $p + p$ Collisions

Valparaiso University
Taegyun Kim
July 21, 2016

Beyond the valence quarks’ spin contribution to the total spin of a proton, gluon and sea quark contributions are becoming clear as well. For proton-proton collisions at a center of mass energy of 510 GeV, neutral pion production is dominated by gluon-gluon and gluon-quark scattering. An avenue to constrain the gluon polarization is the asymmetry, A_{LL}, in the production of neutral pions from collisions of longitudinally spin-polarized proton beams. Our experiment was performed with the STAR detector at the Relativistic Heavy Ion Collider (RHIC), unique for its ability to collide spin-polarized proton beams. The Endcap Electromagnetic Calorimeter (EEMC) of the STAR detector with its pseudorapidity (η) range between 1.09 and 2.00 and full azimuthal coverage measures energies of photons from π^0 decays. We consider the invariant mass of all photon pairs in the EEMC as we identify π^0 candidates. We will present the current status of the analysis of the $\pi^0 \ A_{LL}$ as measured by the EEMC at STAR in 2012 data with center-of-mass energy of 510 GeV.