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Abstract

Polyovulation is the production of more than one ovum, or egg, during a single menstrual
cycle. This paper examines the probability of the human ovarian system ovulating k eggs
during a single cycle, for k ≥ 0. In order to obtain precise estimates for the probability of
polyovulation, we use U.S. birth data from the 1950s (before the introduction of artificial
reproductive technologies). However, to utilize birth data, we model the various processes
that eggs undergo in order to result in a live birth, including fertilization, possible division,
implantation, and potential miscarriage. Our model produces novel estimates for the proba-
bility that a fertilized egg divides, as well as for the zygosity type frequencies of twins, triplets,
and quadruplets.

Keywords: probability, polyovulation, zygosity, twins, birth data

1 Introduction

Probabilistic techniques have been applied to the study
of multiple births at least since 1901 when Weinberg de-
veloped the Weinberg Differential Rule to estimate the
population relative frequencies of identical, i.e. monozy-
gotic, versus fraternal, i.e. dizygotic, twins [10]. Identical
twins possess the same DNA, while fraternal twins do not,
and hence proper classification can have important health
repercussions. Up through the early 1900s, the prevailing
medical practice was to classify twins of the same sex as
identical if the twins shared a placenta and as fraternal
if each twin had its own placenta. However, the Wein-
berg Differential Rule indicated that classification based
upon number of placentas resulted in an overabundance
of same sex fraternal twins compared to what would be
expected from basic probability. This realization eventu-
ally led the medical community to conclude that identical
twins could indeed have separate placentas and increased
proper classification of twins.

To illustrate how the Weinberg Differential Rule works,
we consider U.S birth data from 1952–1954. Due to con-
straints of available data, only Caucasian births are used
in the analysis. Birth records indicate that there were
32,923 sets of opposite sex twins and 72,547 sets of same
sex twins [1]. All of the opposite sex twins must be frater-
nal since identical twins share the same DNA and hence
must be the same sex. Assuming that the sex of each twin
is independent and that males and females are equally
likely, assumptions that are fairly reasonable, 50% of fra-
ternal twins should be the same sex and 50% should be

1Department of Mathematics and Statistics, Valparaiso Uni-
versity, Valparaiso, IN

opposite sex. Hence, if there were 32,923 sets of oppo-
site sex fraternal twins, there should be approximately
32,923 sets of same sex fraternal twins. This gives a total
of 65,846 sets of fraternal twins and the remaining sets
as identical. Dividing the estimates by 105,470, the to-
tal number of sets of twins, gives an estimate that 62.4%
of twins are fraternal and 37.6% of twins are identical.
Now for a particular set of same sex twins, the only way
to know for sure whether they are identical or fraternal
is to perform a DNA test, but the Weinberg Differential
Rule gives a simple, yet powerful, method for estimating
population frequencies.

Since the Weinberg Differential Rule was developed in
1901, there has been extensive research into the phe-
nomenon of twins and higher order multiples [3, 5], but
limited research into the phenomenon of polyovulation,
which is one of the biological mechanisms that produces
multiple births. In particular, polyovulation, also known
as superovulation, is the production of more than one
ovum, or egg, during a single menstrual cycle. This pa-
per focuses on estimating the probability of the human
ovarian system ovulating k eggs in a single cycle for k ≥ 0.

In order to directly measure the number and locations
of eggs ovulated, ultrasound images of the ovaries can be
utilized to count the number of corpora lutea. The cor-
pus luteum is the remnant of the follicle where the egg
was released from the ovary and is about 1–3 cm, and
hence visible to an ultrasound [9]. However, the prob-
lem with using the number of corpora lutea to estimate
probabilities of polyovulation is that polyovulation is a
fairly rare event and there simply is not adequate ultra-
sound data available. Hence, we instead use birth data in
order to estimate polyovulation frequencies. In particu-
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Birth Type Raw Number Relative Frequency

Singletons 10,283,346 0.989754
Twin Sets 105,470 0.010151

Triplet Sets 973 0.000094
Quadruplet Sets 11 0.000001

Table 1: U.S. Birth Data from 1952–1954

lar, we use the U.S. Caucasian birth data from 1952–1954
that was mentioned previously. We utilize data from the
1950s since that is before the introduction of artificial re-
productive technologies, such as ovulation inducing drugs
and in-vitro fertilization, and we are primarily interested
in the phenomenon of spontaneous polyovulation. Table 1
lists the raw numbers and relative frequencies of single-
tons, twin sets, triplet sets, and quadruplet sets in the
data set. No quintuplets or higher order multiples were
recorded [1].

Now, we cannot simply use the birth relative frequen-
cies as our estimates of polyovulation frequencies because
there are many biological processes that occur in between
ovulation and birth. In particular, once the eggs are
ovulated, they must be fertilized in order to become zy-
gotes. Then the zygotes have to implant successfully in
the uterus of the mother, and can possibly divide before
or after doing so. The implanted embryos then have to
survive the possibility of a potential miscarriage in order
to actually result in live births. In the following section,
we will model each of these stages in succession. In the
course of our modeling, we produce novel estimates for
the probability that a zygote divides, as well as for the
zygosity type relative frequencies (i.e. proportion of iden-
tical versus fraternal) of twins, triplets, and quadruplets,
which are given in Section 3 along with the final results
for the polyovulation probabilities.

2 From Ovulation to Birth

In this section we model the four stages of ovulation, fer-
tilization, division and implantation, and live birth in or-
der to eventually utilize the birth type relative frequen-
cies to achieve our goal of estimating the polyovulation
frequencies.

2.1 Ovulation Model

Let Ok denote the event that exactly k ova are ovulated
in one menstrual cycle for k ≥ 0. It is the probabilities of
these events that is our main goal to estimate. Now for
simplicity we will assume that ovulation of 5 or more eggs
in a single cycle has probability zero, i.e. P (Ok) = 0 for
k ≥ 5. While these probabilities are certainly not exactly
zero, our birth data set had no observed quintuplets or

higher, so it is not feasible for us to estimate the proba-
bilities of these rare events. Since we are using birth data
for our estimates, these estimates are conditional on the
event that there was at least one egg ovulated. Hence, we
will need a separate source for the estimate of zero eggs
ovulated, called anovulation. The literature estimates the
probability of anovulation in fertile women to be around
0.007 [6]. Now since P (O0) = 0.007 and

P (O0) + P (O1) + P (O2) + P (O3) + P (O4) = 1,

we only need three additional linearly independent equa-
tions in order to solve for all the unknown polyovulation
probabilities.

2.2 Fertilization Model

Let Zk denote the event that exactly k zygotes, or fertil-
ized eggs, are produced in one cycle for k ≥ 0. We will
assume that each egg is fertilized independently of all
other eggs with probability pf . The literature estimates
the probability of fertilization to be around 0.3 [7, 9]. The
assumption of independence is supported by the work of
Tong et al. [9], which analyzed ultrasound data of preg-
nant women exhibiting double ovulation. Because of the
independence assumption, we can model the Zk’s in terms
of the Ok’s and pf using the following equations:

P (Z0) = P (O0) + P (O1)(1− pf ) + P (O2)(1− pf )2

+ P (O3)(1− pf )3 + P (O4)(1− pf )4

P (Z1) = P (O1)pf + 2P (O2)pf (1− pf )

+ 3P (O3)pf (1− pf )2 + 4P (O4)pf (1− pf )3

P (Z2) = P (O2)p2f + 3P (O3)p2f (1− pf )

+ 6P (O4)p2f (1− pf )2

P (Z3) = P (O3)p3f + 4P (O4)p3f (1− pf )

P (Z4) = P (O4)p4f .

Note that the coefficient of each term in the above equa-
tions is a combination of the form

(
n
k

)
where we are count-

ing the number of ways to choose the k eggs that are fertil-
ized from the n eggs that were ovulated. In the following
subsections we will work towards finding three linearly in-
dependent equations involving the Zk’s, which can then
be combined with the previous equations in order to solve
for the polyovulation probabilities.
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2.3 Division and Implantation Model

We now model the process by which zygotes possibly di-
vide and implant in order to reach the embryonic stage.
Figure 1 illustrates the possible configurations in which a
certain number of zygotes can result in a certain number
of embryos through division. As mentioned previously
for twins, there is the case of identical twins, also called
monozygotic twins, which result from the division of a
single zygote, and the case of fraternal twins, also called
dizygotic twins, which result from two separate zygotes
with no divisions. In general, the zygosity of a set of mul-
tiples is defined to be the number of zygotes from which
they derived. Hence, triplets can be either monozygotic,
in which all three are identical, dizygotic, in which case
there is one identical pair, or trizygotic, in which all three
are fraternal. Likewise, quadruplets can be monozygotic,
dizygotic, trizygotic, or quadrazygotic. In the case of
monozygotic quadruplets, there are two different possible
division sequences. There could be a primary division,
followed by a secondary division of one of the zygotes,
followed by a tertiary division. Or there could be a pri-
mary division followed by two secondary divisions. Mod-
eling these two cases separately is important because they
have different coefficients for how many similar configu-
rations exist with equal probability by symmetry, which
are indicated in Figure 1 by the boxed factors. Simi-
larly, dizygotic quadruplets could correspond to quadru-
plets consisting of two identical pairs, or a set of three
identical embryos with a fourth non-identical.

The timing of division is also important to model,
as that will affect both the implantation probabilities
and the miscarriage probabilities. An “early” division
in days 1–3 after fertilization will result in embryos with
separate placentas and separate amniotic sacs. A “mid-
dle” division in days 4–8 after fertilization will result in
a shared placenta, but separate amniotic sacs. Implanta-
tion occurs around day 8 after fertilization, and a “late”
division after that (up until around day 14 after fertiliza-
tion) will result in a shared placenta and a shared am-
niotic sac, which has a very high risk of miscarriage [5].
The chorionicity of a set of multiples is defined to be the
number of distinct placentas they they possess, and the
amnionicity of a set of multiples is defined to be the num-
ber of distinct amniotic sacs. Since embryos with separate
placentas cannot share an amniotic sac and embryos de-
riving from separate zygotes cannot share a placenta, the
amnionicity of a set of multiples is always greater than or
equal to the chorionicity, which is always greater than or
equal to the zygosity. Figure 1 illustrates all the possible
zygosity and chorionicity combinations for each number
of embryos, with the placentas indicated by the larger
circles. The different amnionicity possibilities are not il-
lustrated due to the large number of combinations, but

any embryos sharing a placenta could share an amniotic
sac or have distinct amniotic sacs, based upon whether
there was a middle or late division.

For the specific assumptions of our division and im-
plantation model, we will assume that each zygote divides
independently of all other zygotes. We also assume that
once a zygote divides, it resets and has the same prob-
ability of subsequent divisions as a zygote that has not
yet divided. We will assume that divisions that result in
an overall total of more than four offspring at any given
time have a negligible probability and hence will be set
equal to 0. As for implantation, it is the placenta that
implants in the uterus of the mother [7], so we model
the implantation of the placentas, rather than of the in-
dividual zygotes. We assume that each placenta implants
independently of all other placentas with probability pi,
which biological evidence suggests is reasonable [9]. Now
the last assumption is that a shared placenta has the same
implantation probability as an individual placenta. The
validity of this assumption is not addressed in the bio-
logical literature and has a peculiar probabilistic result.
Because an early division results in two separate placen-
tas, the probability that both embryos implant will be
p2i , whereas since a middle division results in a shared
placenta, the probability that both embryos implant is
pi, which is much greater than p2i . Hence, it seems bi-
ologically plausible that a shared placenta might have a
different implantation probability than an individual pla-
centa, and our hope is that this work will perhaps moti-
vate further research in the biological community about
implantation rates for individual versus shared placentas.
Regardless, the estimates from literature for the proba-
bility of implantation are around 70% [7] and, thus, we
set pi = 0.7.

Let δe denote the probability of an early division, re-
sulting in separate placentas and separate amniotic sacs,
δm denote the probability of a middle division, resulting
in a shared placenta, but separate amniotic sacs, and δl
denote the probability of a late division, resulting in a
shared placenta and shared amniotic sac. The probabil-
ity that a zygote does not divide is (1−δe)(1−δm)(1−δl).
No direct estimates for these division probabilities exist
in the literature. Rather, we use a novel approach to es-
timate the values from the Weinberg Differential Rule, as
described in the Introduction, and the known proportions
of identical twins who are dichorionic/diamniotic, mono-
chorionic/diamniotic, and monochorionic/monoamniotic.
These division probability estimates will be described in
more detail in Section 3.1 since the values depend upon
the miscarriage probabilities described in Section 2.4.

Let Ek,z,c,a denote the event that a pregnancy consists
of k embryos, with zygosity z, chorionicity c, and amnion-
icity a. We consider these events for 1 ≤ k ≤ 4, with the
restriction that 1 ≤ z ≤ c ≤ a ≤ k, resulting in 35 pos-
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Figure 1: Possible division configurations by number of zygotes and number of embryos, with number of placentas
indicated by larger circles and number of similar configurations with equal probability indicated by boxed factor.
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sible events. Using the assumptions listed above regard-
ing division and implantation, we can write P (Ek,z,c,a)
in terms of the P (Zk)’s, pi, δe, δm, and δl. For example,
the probabilities for all of the cases of quadrazygotic or
trizygotic quadruplets are

P (E4,4,4,4) = P (Z4)(1− δe)4(1− δm)4(1− δl)4p4i
P (E4,3,4,4) = 3P (Z3)δe(1− δe)4(1− δm)4(1− δl)4p4i
P (E4,3,3,4) = 3P (Z3)(1− δe)3δm(1− δm)4(1− δl)4p3i
P (E4,3,3,3) = 3P (Z3)(1− δe)3(1− δm)3δl(1− δl)4p3i .

The three cases of trizygotic quadruplets are distin-
guished by whether there was an early, middle, or late
division; all have a coefficient of 3 because there are three
choices for which of the zygotes undergoes the division.
Note that in each case the power of pi is equal to the
chorionicity since pi is the probability of implantation for
a distinct placenta, rather than for a distinct embryo. The
early division results in four distinct placentas and hence
a p4i factor, whereas the middle and late divisions result
in three distinct placentas, with one of them shared by
two embryos, and hence a p3i factor.

As the zygosity decreases or the number of embryos
decreases, there are more cases to consider. For example,
the probability of trizygotic triplets is

P (E3,3,3,3) = P (Z3)(1− δe)3(1− δm)3(1− δl)3p3i
+ 6P (Z3)δe(1− δe)4(1− δm)4(1− δl)3p3i (1− pi)

+ 4P (Z4)(1− δe)4(1− δm)4(1− δl)3p3i (1− pi).

Note that the first term in P (E3,3,3,3) corresponds to the
case of three zygotes, none of which divide and all of
which successfully implant, whereas the second term cor-
responds to the case of three zygotes, one of which divides
early, but then one of the zygotes resulting from the divi-
sion does not successfully implant. The coefficient of the
second term is 6 because there are three choices for which
zygote divides and two choices for which of the resulting
zygotes does not implant. The third term in P (E3,3,3,3)
corresponds to the case of four zygotes where none divide,
but one does not successfully implant. Although this case
did originally derive from four zygotes, the triplets would
still be referred to as trizygotic because the remaining off-
spring only derived from three zygotes. The coefficient of
4 is due to choosing which of the four zygotes does not
implant. The expressions for the 30 remaining P (Ek,z,c,a)
are omitted for brevity, but follow from similar logic.

2.4 Birth Model

The final stage of our model from ovulation to birth is to
model the process in which a certain number of embryos
result in a certain number of live births, with the possi-
bility of miscarriage in between. Let Bk denote the event

that a pregnancy results in k live births, for k ≥ 0. Due
to our assumption that a total of more than four offspring
has a negligible probability,

P (B0) = 1− P (B1)− P (B2)− P (B3)− P (B4).

Now, for k ≥ 1,

P (Bk) =

k∑
z=1

k∑
c=z

k∑
a=c

P (Bk,z,c,a)

where Bk,z,c,a is the event that a pregnancy results in
k live births with the offspring possessing zygosity z,
chorionicity c, and amnionicity a. We consider 1 ≤ k ≤ 4
and 1 ≤ z ≤ c ≤ a ≤ k for a total of 35 possibilities.
We will express P (Bk,z,c,a) in terms of P (Ek,z,c,a) and
miscarriage probabilities.

Let βk denote the probability that an embryo with its
own amniotic sac and a placenta supplying a total of k
embryos survives to live birth and pa denote the proba-
bility that an embryo which shares an amniotic sac with
at least one other embryo survives to live birth, relative
to the probability for an embryo that has its own amni-
otic sac. We will assume that each embryo is miscarried
independently of all other embryos, which is certainly the
most unrealistic of all our assumptions, but assumed for
feasibility. We also assume that the probability of mis-
carriage does not depend upon the zygosity. This im-
plies that identical twins with separate placentas have an
equal probability of miscarriage to fraternal twins, which
always have separate placentas. The biological literature
largely supports this, but there is perhaps some evidence
that even identical twins with separate placentas have a
higher rate of miscarriage due to chromosomal problems
resulting from the division of a single zygote [5].

While it is difficult to accurately estimate the survival
probabilities since many miscarriages go unreported, we
base our estimates for the βk’s and pa from values given
in the work of Allen [1], which utilized the same U.S.
birth data set from 1952–1954 that we use in this paper.
In particular, we estimate β1 ≈ 0.8571, β2 ≈ 0.7840,
β3 ≈ 0.7696, β4 ≈ 0.7544, and pa ≈ 0.5. Note that since
we are using birth data from the 1950s, these survival
probabilities are estimates for pregnancies in the 1950s;
survival probabilities today are likely much higher due to
advances in prenatal care.

Using our assumptions listed above, the probability of
the birth of trizygotic triplets is

P (B3,3,3,3) = P (E3,3,3,3)β3
1

+ P (E4,4,4,4)4β3
1(1− β1)

+ P (E4,3,4,4)2β3
1(1− β1)

+ P (E4,3,3,4)2β2
1β2(1− β2)

+ P (E4,3,3,3)2β2
1β2pa(1− β2pa).
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The first term in P (B3,3,3,3) comes from the case of three
embryos that were trizygotic and all three survive to live
birth. The second term is the case of four embryos that
were quadrazygotic, but only three survive to live birth.
The coefficient of 4 comes from which of the four embryos
was miscarried. The last three terms come from cases of
four embryos that were trizygotic. There is now only a
coefficient of 2 because in order for the end result to be
trizygotic, one of the two identical embryos that resulted
from the division of a zygote must be miscarried. The
differences between the three terms come from whether
or not the two identical embryos shared a placenta or
amniotic sac. The other possibilities for P (Bk,z,c,a) follow
from similar logic.

Now based upon the birth type relative frequencies
from the U.S. 1952–1954 birth data set given in Table 1,

P (B2|B1 ∪B2 ∪B3 ∪B4) = 0.010151

=
P (B2)

P (B1) + P (B2) + P (B3) + P (B4)

P (B3|B1 ∪B2 ∪B3 ∪B4) = 0.000094

=
P (B3)

P (B1) + P (B2) + P (B3) + P (B4)

P (B4|B1 ∪B2 ∪B3 ∪B4) = 0.000001

=
P (B4)

P (B1) + P (B2) + P (B3) + P (B4)

The equations listed above produce three linearly inde-
pendent equations for P (B1), P (B2), P (B3), and P (B4).
We can trace back the expressions for the P (Bk)’s in
terms of the P (Ok)’s working backwards from our birth
model, to our division and implantation model, to our
fertilization model. We can then combine these three lin-
early independent equations with the two linearly inde-
pendent equations given in the ovulation model in Sec-
tion 2.1. These five linearly independent equations can
then be used to solve for the five unknown polyovulation
probabilities, P (O0), P (O1), P (O2), P (O3), and P (O4),
using basic linear algebra techniques. The final estimates
are given in Section 3.2.

3 Probability Estimate Results

In this section we present our key results for the estimates
of the division probabilities and polyovulation probabil-
ities. In addition, because our model described in the
previous section tracked the zygosity, chorionicity, and
amnionicity types of all multiple births, we are able to
produce novel estimates for the zygosity, chorionicity,
and amnionicity type frequencies of twins, triplets and
quadruplets, which are presented in Section 3.3.

3.1 Estimates of Division Probabilities

As mentioned previously, no direct estimates for the
probability that a zygote undergoes an early, mid-
dle, or late division exist in the literature. We give
novel estimates based upon the known proportions of
identical twins who are dichorionic/diamniotic (di/di),
monochorionic/diamniotic (mono/di), and monochori-
onic/monoamniotic (mono/mono), which correspond to
an early, middle, and late division, respectively. In par-
ticular, approximately 25% of twins are di/di, 73% are
mono/di, and 2% are mono/mono [5, 8].

Now to leading order, the ratio of di/di identical twins
to all identical twins is

δep
2
iβ

2
1

δep2iβ
2
1 + δmpiβ2

2 + δlpiβ2
2p

2
a

= 0.25,

the ratio of mono/di identical twins to all identical twins
is

δmpiβ
2
2

δep2iβ
2
1 + δmpiβ2

2 + δlpiβ2
2p

2
a

= 0.73,

and the ratio of mono/mono identical twins to all identical
twins is

δlpiβ
2
2p

2
a

δep2iβ
2
1 + δmpiβ2

2 + δlpiβ2
2p

2
a

= 0.02.

Here all factors of the form (1− δe), (1− δm), or (1− δl)
are approximated to one for feasibility. Only two of these
three equations are linearly independent, so we need an
additional linearly independent equation in order to solve
for the unknowns of δe, δm, and δl.

The additional linearly independent equation is pro-
duced by the ratio of identical twin sets to singletons,
which can be derived from the Weinberg Differential Rule.
As described in the Introduction, there are an estimated
39,624 sets of identical twins in the U.S. 1952–1954 birth
data set, as well as 10,283,346 singletons, resulting in a
ratio of 0.00385322. Now to leading order, the ratio of
identical twins sets to singletons is

δep
2
iβ

2
1 + δmpiβ

2
2 + δlpiβ

2
2p

2
a

piβ1
= 0.00385322.

Solving the system of three linearly independent equa-
tions using basic linear algebra techniques results in δe ≈
0.001606, δm ≈ 0.003922, and δl ≈ 0.000430. We observe
that a middle division is the most likely, occurring about
0.4% of the time and is about twice as likely as an early
division, which in turn is about four times as likely as
a late division. These division probabilities, along with
the other key parameter estimates, are summarized in
Table 2.
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Parameter Notation Estimate Parameter Notation Estimate
anovulation P (O0) 0.007 survival with placenta

shared by 1 embryo
β1 0.8571

fertilization pf 0.3 survival with placenta
shared by 2 embryos

β2 0.7840

implantation pi 0.7 survival with placenta
shared by 3 embryos

β3 0.7696

early division δe 0.001606 survival with placenta
shared by 4 embryos

β4 0.7544

middle division δm 0.003922 relative survival for
shared amniotic sac

pa 0.5

late division δl 0.000430

Table 2: Summary of Key Parameter Estimates

3.2 Estimates of Polyovulation
Probabilities

Using the birth type relative frequencies, combined with
our fertilization, division and implantation, and miscar-
riage models, as well as the parameter values given in
Table 2, we obtain the following estimates for polyovula-
tion probabilities:

P (O0) ≈ 0.007

P (O1) ≈ 0.957643

P (O2) ≈ 0.034784

P (O3) ≈ 0.000533

P (O4) ≈ 0.000040;

hence, we estimate that more than one egg is released
approximately 3.5% of the time. Note that these are es-
timates of population frequencies across fertile women in
the U.S. An individual woman’s polyovulation rates may
differ from these population-level frequencies, and there
is evidence that women who exhibit polyovulation in one
cycle are more likely to exhibit polyovulation in future
cycles as well. In addition, the polyovulation estimates
were based upon Caucasian birth data, but there is evi-
dence that polyovulation rates may vary across racial and
ethnic lines [5].

3.3 Estimates of Zygosity, Chorionicity,
and Amnionicity Probabilities

In Section 2.4, we defined Bk,z,c,a to be the event that a
pregnancy results in k live births with zygosity z, chori-
onicity c, and amnionicity a. By looking at the ratio
of Bk,z,c,a to Bk, the overall event that a pregnancy re-
sults in k live births, we obtain estimates of the zygosity,
chorionicity, and amnionicity type relative frequencies for
twins, triplets, and quadruplets. In particular, we esti-
mate that for twins, 62.5% are dizygotic (i.e. fraternal)

and 37.5% are monozygotic (i.e. identical), which almost
exactly matches the values from the Weinberg Differential
Rule described in the Introduction. Of the monozygotic
twins, we estimate that 25% are dichorionic/diamniotic,
73% are monochorionic/diamniotic, and 2% are mono-
chorionic/monoamniotic. Note that these relative fre-
quencies of identical twins are consistent with values from
the literature [5, 8], which are based upon direct observa-
tion of the number of placentas and amniotic sacs from
twin births. This is not surprising, since our estimates for
the division probabilities were based upon these literature
values.

Less is known in the literature about the zygosity,
chorionicity, and amnionicity type relative frequencies for
triplets and quadruplets since these higher order multiple
births are fairly rare. Our novel estimates are given in
Table 3. Note that for each possible zygosity, the most
common outcome is for the chorionicity to equal the zy-
gosity and for the amnionicity to equal the number of
live births. This is an artifact of a middle division, which
produces a shared placenta but separate amniotic sacs,
having a significantly larger probability than an early or
late division.

Now the work of Allen [1] does give estimates of the
zygosity type relative frequencies for triplets and quadru-
plets, but does not give the added information regarding
chorionicity and amnionicity. Allen estimates that 22%
of triplets are monozygotic, 52% are dizygotic, and 26%
are trizygotic, while for quadruplets, 12% are monozy-
gotic, 35% are dizygotic, 27% are trizygotic, and 26% are
quadrazygotic. These estimates were based upon exten-
sions of the Weinberg Differential Rule to match the sex
distributions of triplets and quadruplets.

The work of Guilherme et al. [4] analyzed the DNA and
placentas of 64 sets of spontaneously conceived triplets to
determine the precise zygosity and chorionicity relative
frequencies within the data set, and found that 28% were
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Triplets Zygosity
Chorionicity Amnionicity 1 2 3 Total

1
1 0.000257

0.1778072 0.004759
3 0.172791

2
2 0.001568 0.010443

0.449758
3 0.057143 0.380604

3 3 0.019547 0.130189 0.222699 0.372435

Total 0.256065 0.521236 0.222699 1

Quadruplets Zygosity
Chorionicity Amnionicity 1 2 3 4 Total

1

1 0.000009

0.111614
2 0.000147
3 0.003561
4 0.107897

2
2 0.000051 0.000338

0.2939473 0.001216 0.008124
4 0.036994 0.247224

3
3 0.000406 0.002716 0.004547

0.286505
4 0.014774 0.098738 0.165324

4 4 0.004210 0.028133 0.056527 0.219064 0.307934

Total 0.169265 0.385273 0.226398 0.219064 1

Table 3: Zygosity, Chorionicity, and Amnionicity Type Relative Frequencies for Triplets and Quadruplets

monozygotic, 50% were dizygotic, and 22% were trizy-
gotic. Of the dizygotic triplets, 75% were dichorionic and
25% were trichorionic. Of the monozygotic triplets, 56%
were monochorionic, 39% were dichorionic, and 5% were
trichorionic. All of these values are fairly consistent with
our estimates given in Table 3, and our work concurs with
the assessment of Guilherme et al. that Allen’s estimates
tend to slightly underestimate the proportion of multiples
that are monozygotic. Moreover, we estimate that 2% of
dizygotic triplets are diamniotic, while 0.1% of monozy-
gotic triplets are monoamniotic and 2.5% are diamniotic.
These amnionicity estimates are pertinent because shared
amniotic sacs carry the highest risk of health complica-
tions.

4 Conclusion

In summary, we have analyzed the biological phenomenon
of polyovulation and produced novel estimates for the
probability of the human ovarian system ovulating k eggs
in a single cycle, for k ≥ 0. In our pursuit of these esti-
mates, we utilized U.S. birth data from the 1950s, before
the introduction of artificial reproductive technologies,
and modeled the various stages that eggs undergo in order
to reach live births, including fertilization, possible divi-

sion, implantation, and potential miscarriage. As a conse-
quence of our model, we produced novel estimates for the
probability that a zygote undergoes an early, middle, or
late division, where the timing is defined by the number of
days after fertilization. Furthermore, our model enabled
us to provide estimates of the zygosity, chorionicity, and
amnionicity type relative frequencies of twins, triplets,
and quadruplets. While our main goal was to estimate
polyovulation probabilities, these zygosity, chorionicity,
and amnionicity estimates provide a valuable contribu-
tion in their own right to the study of multiple births.

Future work could include sensitivity analysis on the
various literature estimates for anovulation, fertilization,
implantation, and miscarriage, which were summarized
in Table 2. In addition, the various assumptions made
in our fertilization, division and implantation, and birth
models could be reconsidered and generalized in order to
have the models represent the true underlying biologi-
cal processes to the fullest extent possible. In particular,
we would like to generalize the division model to allow
probabilities of secondary and tertiary divisions to differ
from the probability of a primary division. It is biologi-
cally plausible that a zygote that has divided once may
be either more or less susceptible to subsequent divisions,
so both cases could be explored. We could also explore
different implantation probabilities for individual versus
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shared placentas, and our work here motivates the need
for further biological research into how the underlying
implantation mechanism might differ for a shared pla-
centa compared to an individual placenta. In addition,
the most unrealistic of our assumptions was that each
embryo is miscarried independently of all other embryos;
future work could remove the independence assumption
and impart greater dependence for embryos sharing an
amniotic sac or placenta.

Having estimated the probability of k eggs being ovu-
lated in a single menstrual cycle, future work could seek
to analyze the distribution of the number of eggs ovu-
lated from the left versus right ovaries. One possibility
is that the location of each egg released is independent
of the locations of all other eggs released. This implies
that the number of eggs released from the left ovary,
given that there are a total of k eggs ovulated, follows
a Binomial(k, 12 ) distribution, and likewise for the right
ovary. A second possibility is that ipsilateral ovulation
is favored where polyovulation tends to result from the
overstimulation of a single ovary, and a third possibility
is that contralateral ovulation is favored where the pres-
ence of the corpus luteum resulting from the ovulation of
an egg from a particular ovary has an inhibitory effect on
the release of additional eggs from the same ovary. All
three of these cases are biologically reasonable [2], and
there is very limited real data to test which of the three
models is most likely. The work of Tong et al. [9] found
that out of 27 women with spontaneous double ovulation,
7 had both eggs released from the left ovary, 14 had one
egg released from each ovary, and 6 had both eggs re-
leased from the right ovary. This is consistent with a bi-
nomial distribution where the locations are independent,
but there is need for more data and further analysis be-
cause it is possible that although double ovulation follows
a binomial distribution, triple ovulation and quadruple
ovulation may depart from a binomial model.
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