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Abstract
We investigate pattern avoidance in permutations satisfying some additional restrictions.

These are naturally considered in terms of avoiding patterns in linear extensions of certain forest-
like partially ordered sets, which we call binary shrub forests. In this context, we enumerate
forests avoiding patterns of length three. In four of the five non-equivalent cases, we present
explicit enumerations by exhibiting bijections with certain lattice paths bounded above by the
line y = `x, for some ` ∈ Q+, one of these being the celebrated Duchon’s club paths with
` = 2/3. In the remaining case, we use the machinery of analytic combinatorics to determine
the minimal polynomial of its generating function, and deduce its growth rate.

1 Introduction

In this paper, we extend pattern avoidance to a previously unexamined combinatorial structure.
Let Sn be the set of permutations of length n. First, given permutations π = π1π2 · · ·πn ∈ Sn and
ρ = ρ1ρ2 · · · ρm ∈ Sm we say that π contains ρ as a (classical) pattern if there exist 1 ≤ i1 < i2 <
· · · < im ≤ n such that πia < πib

if and only if ρa < ρb. In this case we say that πi1πi2 · · ·πim is
order-isomorphic to ρ (denoted πi1πi2 · · ·πim ∼ ρ) and that πi1πi2 · · ·πim reduces to ρ. If π does not
contain ρ, then π is said to avoid ρ. This definition of pattern avoidance in permutations appears in
many differing applications ranging from the analysis of sorting algorithms to algebraic geometry,
and has generated a number of enumeration and classification questions that are of interest in their
own right.

Motivated by work with trees [4, 9, 14] and comb posets [17], Levin, Pudwell, Riehl and Sand-
berg [10] considered pattern avoidance in heaps. In particular a complete k-ary tree is a tree where
each node has k or fewer children, all levels except possibly the last are completely full (i.e. level
i contains ki−1 vertices), and the last level has all of its nodes to the left side (i.e. for any two
vertices in the penultimate level, if the right vertex has a positive outdegree, then the outdegree of
the left vertex is k, and no more than one vertex in the penultimate level has outdegree not equal
to 0 or k).
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Figure 1: A binary heap on 9 vertices
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Figure 2: A 13-node binary heap forest

A k-ary heap is a complete k-ary tree labeled with {1, . . . , n} such that every child has a larger
label than its parent. We draw trees (respectively heaps) with the root at the bottom of the figure.
An example of a 2-ary (i.e. binary) heap on 9 vertices is shown in Figure 1. Let Hk

n denote the set
of k-ary n-vertex heaps. The heap in Figure 1 is a member of H2

9. Given a heap H, we associate
a permutation πH with it by recording the vertex labels as they are encountered in a breadth-first
search. For example, if H is the heap in Figure 1, then πH = 125349867. We say that heap H
contains (respectively avoids) ρ as a pattern if πH contains (respectively avoids) ρ as a classical
pattern, using the definition above. Let Hk

n(P ) be the set of members of Hk
n that avoid all patterns

in the list P . While the heap in Figure 1 contains 123, 132, 213, 312, and 321, it is a member of
H2

9(231). In [10], the authors determined
∣∣∣Hk

n(ρ)
∣∣∣ for ρ ∈ (S3 \ {321}), and

∣∣∣Hk
n(P )

∣∣∣ when |P | ≥ 2
and P ⊆ S3.

In this paper we extend their pattern avoidance in a new direction by considering forests of
heaps. A heap forest is an ordered collection of heaps. Given a forest F of heaps H1, H2, . . . ,Hn,
we label all vertices in F with distinct integers from {1, . . . , |F |} (where |F | = |H1| + · · · + |Hn|),
and then associate the permutation πF = πH1πH2 · · ·πHn . In other words, we concatenate the
associated permutations for each heap to obtain the permutation associated to the forest. Given
the forest in Figure 2, πF = 165(10)92438(11)7(12)(13). As before, we say that forest F avoids
pattern ρ if πF avoids ρ. Note, from our example, that forests can be composed of heaps with
varying numbers of vertices or even heaps that are k-ary for different values of k.

The consideration of heap forests introduces a number of new parameters to our problem, so we
restrict our work to forests of binary (or more generally k-ary) shrubs. A shrub is a tree whose root
has only leaves as children. In a binary shrub, each root vertex has exactly two descendants, so a
binary shrub forest has 3n vertices where n is the number of heaps in the forest, while similarly in
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Figure 3: A binary shrub forest with 12 vertices

a k-ary shrub forest we have (k + 1)n vertices.
Let Fk

n be the set of all k-ary shrub forests of n heaps. In Figure 3, we see a member F of F2
4

where πF = (10)(12)(11)129348576. Let Fk
n(P ) be the set of members of Fk

n that avoid all patterns
in list P and

S2
n(P ) =

{
π ∈ S3n | π = πf for some f ∈ F2

n(P )
}
.

Equivalently,

S2
n(P ) = {π ∈ S3n(P ) | π3i+1 < π3i+2 and π3i+1 < π3i+3 for all 0 ≤ i < n} .

Our main goal is to determine
∣∣S2

n(P )
∣∣ where P ⊆ S3.

In the rest of this paper, we determine
∣∣S2

n(ρ)
∣∣ exactly for each ρ 6= 321. A list of sequences and

corresponding reference numbers from the On-Line Encyclopedia of Integer Sequences [13] is given
in Table 1. This includes results for S2

n(P ) where P contains more than one pattern of length 3.
Details of the enumerations when |P | > 1 are omitted from this paper due to length, but can be
found as an ancillary file attached to this arXiv submission at

http://arxiv.org/src/1510.08036/anc/MultiplePatterns.pdf.

In the next section, we look at each of the sets avoiding a single pattern of length 3. For five
of the patterns, we enumerate the set by establishing a bijection with a family of lattice paths
from (0, 0) to (m, `m) for some ` ∈ Q+, bounded above by the line y = `x. In four cases, these
lattice paths consist of unit east and north steps. S2

n(123) is shown to be equinumerous to such
paths with ` = 2 (Theorem 2.4), and more generally Fk

n(123) is equinumerous to such paths with
` = k (Theorem 2.3). S2

n(132) is in bijection with these paths with ` = 3. Indeed, we prove a more
general result concerning k-ary forests, that Fk

n(132) is equinumerous to these lattice paths with
` = k + 1 (Theorem 2.6). In the case of S2

n(231), we establish a bijection with the celebrated case
of paths bounded above by y = 2

3x, the so-called “Duchon’s club model” (Theorem 2.15), and more
generally we outline how Fk

n(231) is equinumerous to such paths bounded above by y = k
k+1x.

We prove that S2
n(213) and S2

n(312) are equinumerous (Theorem 2.12) and establish a bijection
with lattice paths having east, north and northeast steps, bounded by y = 3x (Theorem 2.11).
Finally, we investigate S2

n(321). We are unable to enumerate this set explicitly. However, using
functional equations, we are able to generate nearly a thousand terms of its enumeration sequence,
prove that its generating function is algebraic and determine its minimal polynomial and growth
rate (Theorem 2.18). We conclude in Section 3 with some questions.
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P
(∣∣S2

n(P )
∣∣)

n≥1 OEIS Result
∅ 2, 80, 13440, 5913600, . . . A210277
123 1, 3, 12, 55, 273, . . . A001764 Theorem 2.4
132 1, 4, 22, 140, 969, . . . A002293 Corollary 2.8
213 2, 14, 134, 1482, 17818, . . . A144097 Theorem 2.13312
231 2, 23, 377, 7229, 151491, . . . A060941 Theorem 2.15
321 2, 37, 866, 23285, 679606, . . . A257995 Theorem 2.16
132,213 1, 2, 4, 8, 16, . . . A000079132,312
132,321 1, 4, 10, 19, 31, . . . A005448
213,231 2, 8, 32, 128, 512, . . . A004171231,312
213,312

2, 2, 2, 2, 2, . . . A007395213,231,312
213,312,321
213,231,312,321
213,321 2, 6, 13, 23, 36, . . . A143689
231,321 2, 12, 72, 432, 2592, . . . A167747
312,321 2, 10, 50, 250, 1250, . . . A020699
132,213,321 1, 2, 3, 4, 5, . . . A000027
213,231,321 2, 4, 6, 8, 10, . . . A005843
231,312,321 2, 6, 18, 54, 162, . . . A025192

Table 1:
∣∣S2

n(P )
∣∣ where P ⊆ S3

2 Avoiding a pattern of length 3

To enumerate our first two sets, we make use of the following result, concerning lattice paths in
a wedge, first proved by Fuss at the end of the 18th century. See [11, Section 12.1] for a modern
presentation of the proof.

Proposition 2.1 (Fuss [8]). The number of lattice paths with unit East and North steps from (0, 0)
to (m, `m) remaining weakly under the line y = `x is given by

1
`m+ 1

(
(`+ 1)m

m

)
.

2.1 Avoiding 123

We enumerate forests avoiding 123 by exhibiting a bijection with lattice paths bounded above by
y = kx. We begin by establishing the fact that the labels of a 123-avoiding forest are uniquely
determined by their root labels.
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Lemma 2.2. For any F ∈ Fk
n(123) with k ≥ 2 and n ≥ 0, the roots of the forest of F have

decreasing labels as do the leaves.

Proof. Consider πF and suppose to the contrary that πi and πj are root labels where i < j and
πi < πj . Then πiπjπk ∼ 123 where πk is a descendant of πj . Similarly if πi and πj are leaf labels
where i < j and πi < πj , then πkπiπj ∼ 123 where πk is the parent of πi.

Therefore if we know only the root labels of a labeled forest avoiding 123, the labels for the
entire forest are uniquely determined. Note however, this is not the same as saying that any labeling
of roots corresponds with a forest that avoids 123.

We are now in a position to enumerate Fk
n(123) and consequently S2

n(123).

Theorem 2.3. For k ≥ 2 and n ≥ 0,

∣∣∣Fk
n(123)

∣∣∣ = 1
kn+ 1

(
(k + 1)n

n

)
.

Proof. We will show that Fk
n(123) is in bijection with NE lattice paths from (0, 0) to (n, kn) weakly

below the line y = kx. The result then follows by Proposition 2.1 with ` = k.
A 123-avoiding forest of k-ary shrubs is uniquely determined by its roots. Therefore, we must

choose a set of n root labels, 1 = r1 < r2 < · · · < rn such that there are at least k unused labels
larger than rn, at least 2k unused labels larger than rn−1, and in general at least k(n− i+1) unused
labels larger than ri for 1 ≤ i ≤ n. Then the roots of the forest have labels rn, rn−1, . . . , r2, r1, the
leaves use the remaining labels in decreasing order, and each tree has leaves with larger labels than
the roots.

Similarly, in a NE lattice path from (0, 0) to (n, kn) weakly below the line y = kx, we must
choose n steps to be East steps. To stay below the line y = kx, the ith east step must have
k(n− i+ 1) north steps after it (1 ≤ i ≤ n).

Thus, 123-avoiding k-ary shrub forests are in bijection with NE lattice paths below the line
y = kx in the following way: given F ∈ Fk

n(123), let ri = π(k+1)(i−1)+1 for 1 ≤ i ≤ n be the
roots of the forest corresponding to πF . Now construct a NE-lattice path of n East steps and kn
North steps so that the jth step is an East step if and only if j ∈ {r1, . . . , rn}. This map is easily
invertible. Given a NE-lattice path below y = kx, let r1 < · · · < rn be the positions of the East
steps. Then use r1, . . . , rn in decreasing order as the labels of the roots for a forest, and place the
unused labels in decreasing order on the roots.

We then obtain our desired result by setting k = 2.

Corollary 2.4.
∣∣S2

n(123)
∣∣ = 1

2n+ 1

(
3n
n

)
.

The 3 members of S2
2 (123) and their corresponding NE lattice paths are shown in Figure 4.

5



EENNNN
265143

ENENNN
365142

ENNENN
465132

Figure 4: S2
2 (123) and corresponding lattice paths

2.2 Avoiding 132

We enumerate forests avoiding 132 by giving a bijection with lattice paths bounded above by
y = 3x. Indeed, we establish a stronger result, applicable to all k-ary shrub forests, exhibiting a
bijection between Fk

n(132) and lattice paths bounded in the wedge below y = (k + 1)x.
As with forests avoiding 123, we start by establishing that the labels of a 132-avoiding forest

are also determined by their root labels.

Lemma 2.5. The labels of a 132-avoiding k-ary shrub forest are uniquely determined by their root
labels.

Proof. Define S to be the ordered set of currently unused labels in a forest of t heaps with v = k+1
vertices each, and imagine we are assigning labels from left to right on heaps, and in breadth-first
order on each heap. Initially, S = {1, 2, . . . , vt}. The labels in each heap are clearly larger than the
label of their root, and in each heap are increasing (in order to avoid 132). In fact, not only are
they larger, they are the smallest possible unused labels. In other words, the leaves of each root are
labelled, from left to right, by the k smallest unused labels greater than the root. If not, the next
largest label y would be used later (on its right) and would create a xzy ∼ 132 pattern where z is
a leaf of (the root) x but not y. Thus we only need know the label of the roots in order to deduce
the entire labeling of a 132-avoiding k-ary shrub forest of heaps. Furthermore, knowing the first
root and the longest decreasing subsequence of roots is sufficient since if the roots are r1, r2, . . . , rt

and we have ri < ri+1 < · · · < rj−1 > rj then ri > rj in order to avoid 132.

Again, Lemma 2.5 is not equivalent to saying that any labeling of roots corresponds with a
forest that avoids 132.

It turns out that we can use the structure of 132-avoiding forests to describe not only S2
n(132),

but more generally Fk
n(132).

Theorem 2.6.
∣∣Fk

n(132)
∣∣ = 1

(k + 1)n+ 1

(
(k + 2)n

n

)
.

Proof. We provide a bijection from Fk
n(132) to the set P of paths under the line y = (k + 1)x

from (0, 0) to (n, (k + 1)n) using North (0, 1) and East (1, 0) steps. The result then follows by
Proposition 2.1 with ` = k + 1.

Define φ : P → Fk
n(132) as follows. Given p ∈ P , let 0 = w1 ≤ w2 ≤ · · · ≤ wn be the heights of

the East steps in p. Let w′ := (wn + 1)(wn−1 + 1) · · · (w1 + 1). Label the first root w′1. For each
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subsequent root, if w′i 6= w′i−1, then label root i with w′i. If w′i = w′i−1, leave root i unlabeled. Now,
by Lemma 2.5 label the remaining forest vertices from left to right (and in breadth-first order on
each heap), at each point using the smallest unused label larger than the most recent root. We
claim this forest avoids 132. Suppose there were a 132 pattern not involving a root where ` plays
the role of 1. Since `’s root is smaller than `, there is another copy of 132 using `’s root. Now, by
construction, all entries larger than a given root and after the root appear in increasing order, so
this forest is 132-avoiding.

Next we describe φ−1 : Fk
n(132)→ P , beginning with a 132-avoiding forest. We create a string

y, with y1 being the root of the first heap. We add an element to the string y for each root ri. If the
permutation has been only increasing since ri−1, set yi = yi−1. If the permutation has had a descent
(which could only occur between the last leaf of the tree with root ri−1 and the root ri), set yi = ri.
We then create a string y′ by subtracting 1 from each element of y. Finally we reverse the string to
obtain y′r, which is our string displaying heights of the East steps in our path, which we claim lies
below the line y = (k+1)x. Notice that a path lies below y = (k+1)x if and only if y′ri ≤ (i−1)(k+1)
for i ≥ 1. By construction, y1 = r1 ≤ n − k since r1 has k leaves larger than itself. In general, if
r∗i = min(r1, . . . , ri), then r∗i ≤ n−((i−1)+ki) = n+1−(k+1)i since there are i−1 other roots and
ki leaves larger than ri as labels on the first i shrubs. Since yi = r∗i , we have that yi ≤ n+1−(k+1)i
for all i, and thus y′i ≤ n− (k+ 1)i for all i. Let t = n

k+1 be the number of trees in our shrub forest.
Our bound on y′i implies that y′rt+1−i ≤ n−(k+1)(t+1−i) = t(k+1)−(k+1)(t+1−i) = (i−1)(k+1),
as desired.

This proof gives two easy corollaries. The first demonstrates that although we considered shrubs
here, in special cases (such as avoiding 132) we can characterize the shrub condition more simply
in terms of a permutation composed of a string of equal-length subpermutations. The second is
our result restricted to binary shrubs.

Corollary 2.7. Let σ be a permutation composed of a concatenation of m increasing sequences of
length n. The number of such σ ∈ Snm(132) is given by

1
nm+ 1

(
(n+ 1)m

m

)
.

Also,
∣∣S2

n(132)
∣∣ is a special case of Theorem 2.6.

Corollary 2.8.
∣∣S2

n(132)
∣∣ =

∣∣F2
n(132)

∣∣ = 1
3n+ 1

(
4n
n

)
.

Figure 5 shows two examples of lattice paths below y = 3x that correspond to members of
S2(132).

2.3 Avoiding 213 or 312

The only pair of permutations ρ1, ρ2 ∈ S3 for which
∣∣S2(ρ1)

∣∣ =
∣∣S2(ρ2)

∣∣ is {ρ1, ρ2} = {213, 312}.
We prove this equivalence in Theorem 2.12 below.

To enumerate these sets, we make use of a variant of the result of Fuss we used above, in which
diagonal, as well as horizontal and vertical, steps are permitted.
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w = 034 = y′r w = 022 = y′r

w′ = 541 = y w′ = 331 = y
π = 567 489 123 π = 345 678 129

Figure 5: Two lattice paths and the permutations corresponding to the 132-avoiding binary shrubs

Proposition 2.9 (Schröder [15, Theorem 2.9]). The number of lattice paths with steps (0, 1), (1, 0)
and (1, 1), from (0, 0) to (m, `m), remaining weakly below the line y = `x is given by

1
`m+ 1

m∑
v=0

(
`m+ 1
m− v

)(
`m+ v

v

)
.

We also require the following ‘folklore’ bijection between two families of lattice paths. This
proposition follows directly from the invertibility of the affine map of the Euclidean plane implied
in its statement.

Proposition 2.10 (Banderier and Wallner [2, Proposition 2.1]). Lattice paths with step set S,
from (0, 0) to (m, `m) remaining weakly below y = `x are in bijection with lattice paths with step
set {(x+ y, `x− y) : (x, y) ∈ S}, from (0, 0) to ((`+ 1)m, 0) remaining weakly above the x-axis.

We enumerate forests avoiding 213 by exhibiting a bijection with a family of lattice paths which,
by Proposition 2.10, are known to be equinumerous to paths bounded above by y = 3x.

Theorem 2.11.
∣∣S2

n(213)
∣∣ = an where an is the number of lattice paths from (0, 0) to (4n, 0) with

unit steps (1, 3), (2, 2), and (1,−1) staying weakly above the x-axis.

Proof. First we give a correspondence from lattice paths to 213-avoiding permutations.
Begin with a lattice path from (0, 0) to (4n, 0) that contains only (1, 3), (2, 2), and (1,−1) steps

and stays weakly above the x-axis. Partition the path into segments that traverse exactly one unit
in the vertical direction. (Each (2, 2) step will be partitioned into 2 segments and each (1, 3) step
will be partitioned into 3 segments.) We label each segment of a (1, 3) or (2, 2) step as well as the
midpoint of each (2, 2) step with a distinct label from {1, 2, . . . , 3n} in the following way: Locate
the lowest line y = i from which an unlabeled up-segment begins. Find the rightmost such segment
s beginning at y = i, and give s the lowest unused label. Let j be the number of segments and
midpoints to the right of s. We now apply the j smallest unused labels to the subpath to the
right of s and the remaining (larger) unused labels to the subpath to the left of s, and repeat this
construction recursively. In the case that a subpath has no up-segments, it must consist of a single
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midpoint of a (2, 2)-step and so it receives the only unused label reserved for the subpath. Now,
read the labels from left to right to obtain a permutation π.

Notice that π can be the labels of a binary shrub forest since the three labels on each increasing
(1, 3) step or (2, 2) step correspond to the labels of a heap. By construction, the labels on a (1, 3)
step form a 123 pattern while the labels on a (2, 2) step form a 132 pattern. Further, π avoids 213
since for each digit i, all labels larger than and left of i are greater than all labels larger than and
right of i.

Next, we show how to reverse this correspondence, by giving a map from 213-avoiding permu-
tations to lattice paths. Start with a binary shrub forest f . Consider f one heap at a time. A heap
with an increasing pair of leaves corresponds to a (1, 3) step and a heap with a decreasing pair of
leaves corresponds to a (2, 2) step. The (1, 3) and (2, 2) steps can be separated by (1,−1) steps.
To determine the placement of the (1,−1) steps, we look at the roots of the heaps.

Take π and mark any digit that is the first digit of a pair of leaves with decreasing labels. Now,
for each root, count the number of unmarked digits (roots and unmarked leaves) before the root and
larger than the root. This is the number of (1,−1) steps that immediately precede the increasing
step corresponding to that heap. Mark the digits that were just used and repeat. Finally, end the
path by adding (1,−1) steps to return to the x-axis.

As an example, consider the path in Figure 6. Here, (2, 2) steps are shown with doubled lines
to make them clearly distinct from (1, 3) steps. For the map from π to the path, the heaps 7 15 14,
11 13 12, and 2 4 3 have decreasing leaves, so each of them correspond to a (2, 2) step. The heaps
8 9 10 and 1 5 6 have increasing leaves, so each of them correspond to a (1, 3) step. The increasing
steps in the path alternate between (2, 2) steps and (1, 3) steps. Now, we mark the digits 15, 13,
and 4 in π. For the root 8, we see that 14 is unmarked and prior to 8, so we put one (1,−1) step
between the first two upsteps and mark 14. For the root 11, we see no numbers larger than 11 and
prior to 11 that have not yet been used, so we put zero (1,−1) steps between the second and third
upsteps. For the root 1, we see 12, 11, 10, 9, 8, and 7 larger than 1 and prior to 1 that have not
yet been used, so we put six (1,−1) steps between the third and fourth upsteps and mark 12, 11,
10, 9, 8, and 7. For the root 2, we see 5 and 6 larger than 2 and prior to 2 that have not yet been
used, so we put two (1,−1) steps between the fourth and fifth upsteps and mark 5 and 6. Finally,
we must take three (1,−1) steps at the end of the path to return to the x-axis.

7

14
15

8

9

10

11

12
13

1

5

6

2

3
4

π =7 15 14 8 9 10 11 13 12 1 5 6 2 4 3

Figure 6: A lattice path and its corresponding 213-avoiding permutation

We now show that 213-avoiding forests are equinumerous to those avoiding 312.

9



Theorem 2.12.
∣∣S2

n(213)
∣∣ =

∣∣S2
n(312)

∣∣.
Proof. Consider a forest avoiding 213 as it is built from left to right. According to our correspon-
dence a (2, 2) upstep indicates that the next heap forms a 132 pattern while a (1, 3) upstep indicates
that the next heap in the forest forms a 123 pattern. The (1,−1) steps between the upsteps indicate
the labels of the next in the following way:

Suppose that the first k upsteps in our path encode a forest with labels {1, 2, . . . , 3k} where the
last heap forms a 123 pattern with labels `−2, `−1, `. We wish to append a single new heap to this
forest. In order for the shrub forest to avoid 213, all labels on the new heap must be consecutive.
In particular, the labels on the new heap may be i+ 1, i+ 2, i+ 3 for 0 ≤ i ≤ ` (and all labels larger
than i on the original forest are incremented by 3). Let d be the number of downsteps immediately
after the (1, 3) upstep corresponding to the last 123 pattern; then `− d = i indicates the labels on
the next heap to be appended are i+ 1, i+ 2, and i+ 3.

Similarly, suppose that the first k upsteps in our path encode a forest with labels {1, 2, . . . , 3k}
where the last heap forms a 132 pattern with labels `− 2, `− 1, `. We wish to append a single new
heap to this forest. In order for the shrub forest to avoid 213, all labels on the new heap must be
consecutive. In particular, the labels on the new heap may be i+1, i+2, i+3 for 0 ≤ i ≤ `−1 (and all
labels larger than i on the original forest are incremented by 3). Let d be the number of downsteps
immediately after the (2, 2) upstep corresponding to the last 132 pattern; then `−d−1 = i indicates
the labels on the next heap to be appended are i+ 1, i+ 2, and i+ 3.

In general, when we append a new 123 heap to the end of a 213-avoiding forest, we increase the
number of sets of labels we can use on the next heap by 3, and when we append a new 132 heap
to the end of a 213-avoiding forest, we increase the number of sets of labels we can use on the next
heap by 2. The number k of (1,−1) downsteps tells us to use the (k + 1)st highest possible value
for the root of the next appended heap.

We can construct 312-avoiding forests in a similar way, encoding 123 heaps with (1, 3) steps
and 132 heaps with (2, 2) steps.

Suppose that the first k upsteps in our path encode a forest with labels {1, 2, . . . , 3k} where
the last heap forms a 123 pattern with labels `− 2, `− 1, `. We wish to append a single new heap
to this forest. In order for the shrub forest to avoid 312, all labels that are used on leaves of the
new heap must be larger than all existing labels, but the root can appear lower. In particular, the
labels on the new heap may be i, 3k+ 2, 3k+ 3 for 1 ≤ i ≤ 3k+ 1 (and if i ≤ 3k then i may not be
the larger digit in an inversion in the original forest on {1, 2, . . . , 3k}). Then, all labels larger than
i− 1 on the original forest are incremented by 1 to obtain the new forest. Let d be the number of
downsteps immediately after the (1, 3) upstep corresponding to the last 123 pattern; then `− d = i
indicates the labels on the next heap to be appended are i, 3k + 2, and 3k + 3.

Similarly, suppose that the first k upsteps in our path encode a forest with labels {1, 2, . . . , 3k}
where the last heap forms a 132 pattern with labels `− 2, `− 1, `. We wish to append a single new
heap to this forest. In order for the shrub forest to avoid 312, all labels that are used on leaves of
the new heap must be larger than all existing labels, and the root can appear lower. In particular,
the labels on the new heap may be i, 3k + 2, 3k + 3 for 1 ≤ i ≤ 3k + 1 (and if i ≤ 3k then i may
not be the larger digit in an inversion in the original forest on {1, 2, . . . , 3k}, so we know i 6= 3k in
this case).
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As before, when we append a new 123 heap to the end of a 312-avoiding forest, we increase the
number of sets of labels we can use on the next heap by 3 (since i ∈ {3k − 1, 3k, 3k + 1} are new),
and when we append a new 132 heap to the end of a 312-avoiding forest, we increase the number
of sets of labels we can use on the next heap by 2 (since i ∈ {3k− 1, 3k+ 1} are new). The number
k of (1,−1) downsteps tells us to use the (k + 1)st highest possible value for the root of the next
appended heap.

Since both 213 and 312-avoiding forests are in bijection with the same set of lattice paths using
(1, 3), (2, 2), and (1,−1) steps, the two sets of forests are equinumerous.

For example, the path in Figure 6 corresponds to the 213-avoiding forest 7 15 14 8 9 10 11 13 12
1 5 6 2 4 3. Earlier, we built this forest by labeling up-segments in the path, but we can also follow
the argument of Theorem 2.12 for an alternate construction. The first upstep is a (2, 2) step, so
we begin with the forest 1 3 2. Next, we have d = 1 downsteps, so i = ` − d − 1 = 3 − 1 − 1 = 1.
Our next tree has labels 2, 3, and 4, and since the next upstep is a (1, 3) step, we have 1 6 5 2 3 4.
Next, we have d = 0 downsteps, so i = `− d = 4− 0 = 4. Our next tree has labels 5, 6, and 7, and
since the next upstep is a (2, 2) step, we have 1 9 8 2 3 4 5 7 6. Next, we have d = 6 downsteps, so
i = `−d−1 = 7−6−1 = 0. Our next tree has labels 1, 2, and 3, and since the next upstep is a (1, 3)
step, we have 4 12 11 5 6 7 8 10 9 1 2 3. Next, we have d = 2 downsteps, so i = `− d = 3− 2 = 1.
Our next tree has labels 2, 3, and 4, and since the next upstep is a (2, 2) step, we have 7 15 14
8 9 10 11 13 12 1 5 6 2 4 3.

Similarly, we can construct a 312-avoiding forest from the same path working from left to right.
The first upstep is a (2, 2) step, so we begin with the forest 1 3 2. Next, we have d = 1 downsteps,
and the possible values of the next root are 1, 2, or 4. We choose the 2nd highest value. Our next
tree has labels 2, 5, and 6, and since the next upstep is a (1, 3) step, we have 1 4 3 2 5 6. Next,
we have d = 0 downsteps, and the possible values of the next root are 1, 2, 5, 6, or 7. We choose
the highest value. Our next tree has labels 7, 8, and 9, and since the next upstep is a (2, 2) step,
we have 1 4 3 2 5 6 7 9 8. Next, we have d = 6 downsteps, and the possible values of the next root
are 1, 2, 5, 6, 7, 8, or 10. We choose the 7th highest value. Our next tree has labels 1, 11, and 12,
and since the next upstep is a (1, 3) step, we have 2 5 4 3 6 7 8 10 9 1 11 12. Next, we have d = 2
downsteps, and the possible values of the next root are 1, 11, 12, or 13. We choose the 3rd highest
value. Our next tree has labels 11, 14, and 15, and since the next upstep is a (2, 2) step, we have
2 5 4 3 6 7 8 10 9 1 12 13 11 15 14.

By combining our results, we can enumerate forests avoiding either 213 or 312.

Theorem 2.13.
∣∣S2

n(213)
∣∣ =

∣∣S2
n(312)

∣∣ = 1
3m+ 1

m∑
v=0

(
3m+ 1
m− v

)(
3m+ v

v

)
.

Proof. The result follows directly from Theorems 2.12 and 2.11, and Propositions 2.10 and 2.9 with
` = 3.

The bijection presented in Theorem 2.12 can be generalized to k-ary shrub forests, for which we
provide an outline in the interest of length. For example, the number of ternary shrubs avoiding 213
is in bijection with lattice paths using the steps (1,−1), (1, 4) (corresponding to 1234), red (2, 3)
(corresponding to 1243), red (3, 2) (corresponding to 1342), blue (2, 3) (corresponding to 1423),
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and blue (3, 2) (corresponding to 1432). Notice that since we wish to use (2, 3) labels and (3, 2)
labels for different kinds of heaps, we need colored labels.

For example, the path (red (3, 2)) (1,−1) (blue (2, 3)) (1,−1) (1,−1) (1, 4) (1,−1)6 corresponds
to 1(11)(12)(10) 2978 3456.

In general, k-ary shrub forests avoiding either 213 or 312 are in bijection with lattice paths
using (1,−1) steps and 1

k+1
(2k

k

)
steps of the form (j, k − j + 2) going from (0, 0) to ((k + 2)n, 0)

and staying weakly above the x-axis. To find the step corresponding to a particular k-ary shrub
permutation π let i be the value of the smallest number that plays the role of a 2 in a 21-pattern,
or i = k+ 2 if π is the identity. Then the corresponding step is (k+ 2− (i− 1), i− 1). This makes
sense since if i is the smallest number that plays the role of 2 in a 21 pattern, then all digits greater
than or equal to i must be larger than labels in new 213-avoiding shrubs appended to the end of
the forest. With i− 1 smaller digits, there are i sets of consecutive values that can be used on the
labels of a newly appended shrub. Using an upstep that takes i− 1 vertical units allows i choices
for how many (1,−1) steps may come after it.

2.4 Avoiding 231

To enumerate S2
n(231), we make use of the following celebrated result of Duchon concerning lattice

paths bounded by y = 2
3x.

Proposition 2.14 (Duchon [5, Theorem 11]). The number of lattice paths of length 5n from the
origin to the line y = 2

3x with unit East and North steps that stay weakly below the line is given by

n∑
i=0

1
5n+ i+ 1

(
5n+ 1
n− i

)(
5n+ 2i

i

)
.

This sequence was investigated further by Banderier and Flajolet [1] under a slightly different
formulation, whose equivalence follows from Proposition 2.10. This alternative perspective is known
as “Duchon’s club model”: People arrive at a club by pairs and leave in threesomes. What is the
number of possible scenarios from the club opening until it closes?

We enumerate forests avoiding 231 by exhibiting a bijection with Duchon’s club paths.

Theorem 2.15. The equality
∣∣S2

n(231)
∣∣ =

n∑
i=0

1
5n+ i+ 1

(
5n+ 1
n− i

)(
5n+ 2i

i

)
holds.

Proof. Let An be the set of 231-avoiding permutations realizable on a binary shrub forest containing
n heaps. Let Bn be the set of lattice paths with 3n East (1, 0) and 2n North (0, 1) steps that stay
at or below the line y = 2x

3 .
To prove the theorem, we give a map φ : Bn → An; then we prove that it is indeed a bijection by

showing that it is injective, well-defined, and surjective. The result then follows by the application
of Proposition 2.14.

To explain φ rigorously, we must first introduce some notation. Given b ∈ Bn, we partition b
into blocks of the form EkN with k ≥ 0. Since there are 2n Ns (and b ends in N), there are 2n
blocks in b; call them B1, . . . , B2n.
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To determine φ(b), we first construct a permutation with vertical bars between certain pairs of
adjacent digits. Given such a permutation a, write a = A1|A2| · · · |A`. Also, given a subpermutation
Ai|Ai+1| · · · |Ai+j , let Ai−Ai+j be the permutation formed by erasing all bars between these blocks.
Finally, given a string of digits a, write ai+ for the string formed by incrementing all digits greater
than or equal to i by 1.

We are now ready to describe φ. Let b ∈ Bn have blocks B1, . . . , B2n.

1. Let i = 2n, and let a = 1.

2. (a) If block Bi = N then let a = 1|(a)1+.
(b) If block Bi = EkN where k ≥ 1, then determine m = max(Ak) + 1. Let

a = m(A1 −Ak|Ak+1| · · · |A`)m+.

3. If i is even, then let a = 1|(a)1+.

4. Decrement i by 1.
If i = 1 then we are done. Return φ(b) = A1 −A`.
If i > 1, then return to step 2.

Recall that a value in a permutation is a left-to-right maximum if it is larger than all the
values to its left. Notice that by construction, at the end of each step, the vertical bars appear
immediately before each left-to-right maximum of a (except the first one). We add a bar in steps
2a and 3 when we introduce an ascent at the beginning of a by a = 1|(a)1+ (and thus a create new
left-to-right maximum). We erase bars in step 2b when we create a new left-to-right maximum
that supersedes the left-to-right maxima from a previous step. It follows that while we do not
use B1 to encode additional digits of A, the number of E’s in B1 is the number of left-to-right
maxima of a at the end of the algorithm describing the map φ. In general, notice that since
max(Ak) = max(A1−Ak) = m− 1, a = A1| · · · |Ak−1|(m− 1)A′k|(m′)A′k+1| · · · where A′i is Ai with
its first entry deleted, and m′ > m− 1.

It is clear that φ is injective; consider the rightmost block where two paths differ and thus two
different digits will be appended to the beginning of a, resulting in different outputs. It remains to
show that φ is well-defined and surjective.

To show that φ is well-defined, we must show that when we read a block B = EkN with k ≥ 0
in step 2 (including both cases 2a and 2b), a = A1|A2| · · · |A` with ` ≥ k. Let b′ = B2n−j+1 · · ·B2n,
the rightmost j blocks of b. We claim that the number of bars in a after we have read j blocks of
b is given by

nN (b′)− nE(b′) +
⌊
nN (b′) + 1

2

⌋
= j − nE(b′) +

⌊
j + 1

2

⌋
,

where nE(W ) (resp. nN (W )) is the number of E (resp. N) steps in word W . We begin with no
bars. Every N block creates one more bar in step 2a. Every occurrence of an EkN block with
k ≥ 1 (step 2b) creates a descent and reduces the number of bars by k − 1. After every second
block (i.e.

⌊
j+1

2

⌋
times) we create an additional bar in step 3. We add 1 to the number of bars to

compute `.
It is immediate from the fact that b ∈ Bn lies below the line y = 2

3x that for all b = b′′b′ ∈
Bn we have (3n − nE(b′), 2n − nN (b′)) ∈ {(x, y) | x, y ∈ N and 2x ≥ 3y} so 2(3n − nE(b′)) ≥
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3(2n − nN (b′)) ⇐⇒ nE(b′) ≤ 3/2nN (b′). Now let b′ = B2n−j+1 · · ·B2n as above, let b∗ =
B2n−jB2n−j+1 · · ·B2n, and suppose B2n−j = EkN . We must show k ≤ `. k = nE(b∗) − nE(b′) ≤
3
2nN (b∗)− nE(b′) = 3

2(j + 1)− nE(b′) ≤ (j + 1)− nE(b′) + j+1
2 , as desired. Therefore, step 2 above

is always possible.
Now, we check that φ(b) ∈ S2

n(231). First, a is indeed a permutation at each step in the
algorithm for φ. We begin with a = 1. Each time we use step 2 or step 3 to prepend a new digit,
all larger digits are incremented by 1 so a always consists of a string of consecutive non-repeating
digits. Next, φ(b) has length 3n since we begin with 1 digit and obtain (2n − 1) new digits from
step 2 and n new digits from step 3. Finally, φ(b) avoids 231 since the digit inserted into the first
position of a must play the role of 2 in the 231 pattern. It is impossible for this digit to play the role
of 2 in steps 2a and 3 since the first digit is the smallest. In case 2b, the permutation has all digits
smaller than m appearing before all digits larger than m. Therefore, φ : Bn → An is well-defined.

Finally, to show that φ is surjective, we show that every a ∈ An has a path b ∈ Bn that is
mapped to it. Given a, we can certainly reverse the encoding of ascents and descents prescribed
by φ. To be rigorous, given a ∈ An, we build the corresponding path b in the following way:

1. Let b be the empty path and let i = 3n− 1.

2. (a) If i = 3z + 1 for some integer z, then b remains unchanged.
(This is the inverse of step 3 above.)

(b) If i 6= 3z + 1 for some integer z and ai < ai+1 then b = Nb.
(This is the inverse of step 2a above.)

(c) If i 6= 3z + 1 for some integer z and ai > ai+1, then b = EkNb where k is the number of
left-to-right maxima of ai+1 · · · a3n that are less than ai.
(This is the inverse of step 2b above).

3. Decrement i.
If i = 1, then φ−1(a) = E3n−nE(b)Nb.
If i > 1 then return to step 2.

To show φ is surjective, we must verify that any path b formed in this way stays below the
line y = 2

3x. Suppose we have a ∈ An such that φ−1(a) /∈ Bn. Consider the first block B`−1 =
EkN (reading from right to left) where the corresponding path goes above the line y = 2

3x, but
B` · · ·B2n is below the line. We have nE(B` · · ·B2n) ≤ 3

2nN (B` · · ·B2n) but nE(B`−1 · · ·B2n) >
3
2nN (B`−1 · · ·B2n), or equivalently, nE(B` · · ·B2n) + k > 3

2 (nN (B` · · ·B2n) + 1). Since b comes
from the map φ−1, we know that

k ≤ 1 + nN (B` · · ·B2n)− nE(B` · · ·B2n) +
⌊
nN (B` · · ·B2n) + 1

2

⌋
.

Therefore,
nE(B` · · ·B2n) + k ≤ 1 + nN (B` · · ·B2n) +

⌊
nN (B` · · ·B2n) + 1

2

⌋
.

But by assumption nE(B` · · ·B2n) + k > 3
2 (nN (B` · · ·B2n) + 1) , so

3
2nN (B` · · ·B2n) + 3

2 < 1 + nN (B` · · ·B2n) +
⌊
nN (B` · · ·B2n) + 1

2

⌋
.
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Simplifying,
1
2nN (B` · · ·B2n) + 1

2 <

⌊
nN (B` · · ·B2n) + 1

2

⌋
.

If nN (B` · · ·B2n) is even, then nN (B` · · ·B2n) = 2z for some integer z, so z+ 1
2 <

⌊
2z+1

2

⌋
= z, which

is a contradiction. On the other hand, if nN (B` · · ·B2n) is odd, then nN (B` · · ·B2n) = 2z + 1 for
some integer z, so z+1 <

⌊
2z+2

2

⌋
= z+1, which is also a contradiction. Therefore, any permutation

in An does indeed correspond to a path below the line y = 2
3x.

For example, consider b = EENENEEEEEENNENNENEN . We have n = 4. Here
B1 = EEN , B2 = EN , B3 = EEEEEEN , B4 = N , B5 = EN , B6 = N , B7 = EN , and
B8 = EN .

• We begin with i = 8 and a = 1.

• Since B8 = EN and k = 1, we see that m = max(1) + 1 = 2, so we have a = 21 by step 2b.
Since i = 8 is even, a = 1|32 by step 3.
Decrement i to 7 and return to step 2.
Since B7 = EN and k = 1, we see that m = max(1) + 1 = 2, so we have a = 21|43 by step
2b.
Decrement i to 6 and return to step 2.
Since B6 = N , a = 1|32|54 by step 2a.
Since i = 6 is even, a = 1|2|43|65 by step 3.
Decrement i to 5 and return to step 2.
Since B5 = EN and k = 1, we see that m = max(1) + 1 = 2, so we have a = 21|3|54|76 by
step 2b.
Decrement i to 4 and return to step 2.
Since B4 = N , a = 1|32|4|65|87 by step 2a.
Since i = 4 is even, a = 1|2|43|5|76|98 by step 3.
Decrement i to 3 and return to step 2.
Since B3 = EEEEEEN and k = 6, we see that m = max(98) + 1 = 10, so we have
a = (10)124357698 by step 2b.
Decrement i to 2 and return to step 2.
Since B2 = EN and k = 1, we see that m = max((10)124357698) + 1 = 11, so we have
a = (11)(10)124357698 by step 2b.
Since i = 2 is even, a = 1|(12)(11)2354687(10)9 by step 3.

• Decrement i to 1. Since i = 1, we are done.
φ(EENENEEEEEENNENNENEN) = 1(12)(11)2354687(10)9 ∈ S2

4 (231).
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Notice that Theorem 2.15 generalizes as follows: Fk
n(231) is equinumerous with paths with unit

East and North steps from (0, 0) to ((k + 1)n, kn) bounded above by y = k
k+1x. Given a path

bounded by y = k
k+1x, we build the permutation for a 231-avoiding k-ary shrub forest from right

to left. Each EiN block encodes information about a leaf of the forest, and after every set of k
leaves we add a new right-to-left minimum as a root.

2.5 Avoiding 321

In contrast to the situation with other patterns of length 3, we are unable to present an explicit
expression for the enumeration of forests avoiding 321. Nor do we exhibit a bijection with a family
of lattice walks (though it is possible that such a bijection exists). However, using the techniques
of analytic combinatorics, we are able to determine the generating function for this set, and its
growth rate.

2.5.1 Deriving a functional equation

We begin by deriving a functional equation for a bivariate generating function, making use of a
catalytic variable.

Recall that an inversion is an occurrence of 21 in a permutation. Given a permutation π, let
its last inversion foot be the lower point of the rightmost inversion of π (if there is one), and let the
statistic lif(π) count the number of entries of π with value greater than that of its last inversion
foot. In other words, if |π| = n and π(i) is the rightmost entry that is not a left-to-right maximum,
then lif(π) = n− π(i). If π is an increasing permutation (i.e., π = 12 · · ·n), then we set lif(π) = n.

Theorem 2.16. Let H(x, u) be the bivariate generating function for 321-avoiding binary shrub
forests, where the coefficient of xnuk is the number of forests consisting of n shrubs whose underlying
permutation σ (of length 3n) satisfies lif(σ) = k.

Then, H(x, u) satisfies the functional equation

H(x, u) = 1 + xu

1− u

(
u2(1− 3u+ 2u2 − u3)

(1− u)2 H(x, u) + 1− 3u+ 3u2 − u3 + u4

(1− u)2 H(x, 1)

+ 2− 2u− u2

1− u
∂H

∂u
(x, 1) + 1

2
∂2H

∂u2 (x, 1)
)
.

Proof. Consider S2
n(321). These are permutations avoiding 321 of length 3n such that each of the

n blocks of three consecutive values is an occurrence of either a 123 or a 132.
Let us consider how a permutation in S2

n(321) may be extended by adding three points to its
right in such a way that the resulting permutation is also a member of S2

n(321). First of all, observe
that whenever a point is added, it must have value greater than that of the last inversion foot, or
else a 321 will be formed.

Suppose lif(σ) = k. Adding a new maximum entry to σ in the rightmost position does not alter
the last inversion foot. In this case, the lif statistic of the resulting permutation is k + 1. On the
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other hand, if a new point is added in any other valid location it results in a permutation whose lif
statistic is at least 1 but is not greater than k, as 321 avoidance implies that the new point must
have value greater than that of the previous last inversion foot.

Define the following four transition rules for the lif statistic:

A: k → {1, . . . , k},

B: k → {1, . . . , k + 1},

C: k → {k + 1},

D: k → {1, k + 1}.

We now verify that the only valid ways to extend a permutation in S2
n(321) (i.e., the only ways to

add a 123 or 132 to the right without creating a 321) are either A then B then B, or else C then C
then D.

To see this, first observe that if we wish to add a 123 or 132 pattern to the right of σ using values
{|σ|+ 1, |σ|+ 2, |σ|+ 3}, then adding the first two entries (12 if adding a 123, 13 if adding a 132)
corresponds to applying C twice. Appending the rightmost entry effects the transition k → {k+ 1}
if a 123 is created and effects the transition k → {1} if a 132 is created. Therefore, if the 123 or
132 pattern is added entirely above the maximum entry of σ, the rule C then C then D captures all
possible transitions for the lif statistic.

Suppose next that the first two entries in the pattern to be appended to σ are added below the
maximum entry of σ. This corresponds to applying rule A twice. Moreover, we are now forbidden
from creating a 132 pattern, as the maximum of σ together with the 32 would be a 321 pattern.
The only option is to create a 123 pattern, and the placement of the last entry corresponds to rule
B.

If on the other hand the first entry to be added lies below the maximum of σ but the second
entry lies above (corresponding to applying rule A and then rule C), either a 123 or a 132 pattern
can be created and the insertion of the last entry corresponds to rule B. This case (A then C then
B), together with the previous case (A then A then B) combine to give the transition rule A then
B then B.

Each of these transition rules can be represented as a linear operator acting on the generating
functions, as follows (see [7, Exercises III.22, p.199 and V.20, p.365]):

ΩA
[
uk
]

= u+ u2 + . . .+ uk = u
1−u(1− uk) ΩA

[
f(u)

]
= u

1−u

(
f(1)− f(u)

)
ΩB
[
uk
]

= u+ u2 + . . .+ uk+1 = u
1−u(1− uk+1) ΩB

[
f(u)

]
= u

1−u

(
f(1)− uf(u)

)
ΩC
[
uk
]

= uk+1 ΩC
[
f(u)

]
= uf(u)

ΩD
[
uk
]

= u+ uk+1 ΩD
[
f(u)

]
= u

(
f(1) + f(u)

)
Thus H(x, u) satisfies the functional equation

H(x, u) = 1 + x
(
ΩB
[
ΩB
[
ΩA
[
H(x, u)

]]]
+ ΩD

[
ΩC
[
ΩC
[
H(x, u)

]]])
,
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where the initial 1 corresponds to the empty shrub forest.
Observing by arithmetic of formal power series that if

f(u) = H(x, 1)−H(x, u)
1− u , then f(1) = ∂H

∂u
(x, 1),

a computer algebra system can easily simplify the resulting expression to give the functional equa-
tion in the statement of the theorem.

The most efficient way to generate coefficients of H(x, u), and hence of H(x, 1), is to iterate the
transition rules. Greater performance is achieved by combining the valid sequences of three steps
into one rule,

ABB+CCD: k →
{

1(k+2
2 ), 2(k+2

2 )−1, 3(k+1
2 ), 4(k

2), . . . , k6, (k + 1)3, k + 2, k + 3
}

,

the right hand side being a multiset in which multiplicities are represented by exponents.
Using Mathematica [16], we were able to calculate 993 values in the enumeration sequence for

binary shrub forests avoiding 321. The first ten terms (including the empty forest) are:

1, 2, 37, 866, 23285, 679606, 20931998, 669688835, 22040134327, 741386199872.

See A257995 in [13] for more.
A Maple program was then used to find a possible polynomial equation satisfied by the gener-

ating function. The first 250 terms sufficed to suggest that H(x, 1) was a root of the polynomial
given in the statement of Theorem 2.18 below, and hence is algebraic.

2.5.2 Confirming algebraicity

To prove that H(x, u), and hence H(x, 1), is algebraic, we make use of a general result of Bousquet-
Mélou and Jehanne [3]. To state their theorem, we first need to introduce some notation. Suppose

F (x, u) = f0(x) + f1(x)u + f2(x)u2 + . . .

is a bivariate formal power series. We define a sequence of operators ∆,∆2,∆3, . . ., that discard
the low order terms, as follows:

∆i[F (x, u)
]

= fi(x) + fi + 1(x)u + fi + 2(x)u2 + . . . .

Theorem 2.17 (Bousquet-Mélou and Jehanne [3], Theorem 3). If P and Q are polynomials, then
the functional equation

F (x, u) = P (u) + xQ
(
F (x, u),∆

[
F (x, u)

]
,∆2[F (x, u)

]
, . . . ,∆k[F (x, u)

]
, x, u

)
has a unique solution for F (x, u) that is a formal power series in x whose coefficients are polynomials
in u. Moreover, this solution is algebraic.
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The functional equation in Theorem 2.16 is not in the appropriate form to apply Theorem 2.17
directly. Setting G(x, u) = H(x, u+ 1), we have

∂H

∂u
(x, 1) = ∂G

∂u
(x, 0) and ∂2H

∂u2 (x, 1) = ∂2G

∂u2 (x, 0)

Upon making these substitutions, the functional equation stated in Theorem 2.16 becomes

G(x, u) = 1 + x(1 + u)
u

(
1 + 4u+ 6u2 + 5u3 + 3u4 + u5

u2 G(x, u)

−1 + 4u+ 6u2 + 3u3 + u4

u2 G(x, 0)− 1 + 4u+ u2

u

∂G

∂u
(x, 0)− 1

2
∂2G

∂u2 (x, 0)
)
.

In addition, the definition of the ∆ operator implies that

∂kG

∂uk
(x, 0) = k!(∆k[G(x, u)]− u∆k+1[G(x, u)]),

for k ≥ 0. Hence, the functional equation for G can be transformed into the form in Theorem 2.17
by making this substitution for k = 0, 1, 2, clearing denominators, and rearranging. Thus G(x, u)
is algebraic, and hence so are H(x, u) and H(x, 1) and its derivatives.

2.5.3 Solving the functional equation

We would like to solve our functional equation to get an explicit expression for H(x, 1). Unfortu-
nately, this is not possible. However, it is possible to determine the minimal polynomial of which
H(x, 1) is a root.

Theorem 2.18. The generating function H0(x) = H(x, 1) for 321-avoiding binary shrub forests is
a root of the polynomial

(4x2 + 4x+ 1) − (x4 − 24x3 + 8x2 − 54x+ 1)H0(x)2

+ (15x4 + 24x3 − 71x2 − 54x)H0(x)4 + (18x5 − 215x4 + 2x3 − 360x2)H0(x)6

+ (3x6 − 228x5 − 213x4 + 162x3 + 729x2)H0(x)8 − (138x6 − 354x5 − 1053x4)H0(x)10

− (36x7 − 751x6 − 486x5)H0(x)12 − (3x8 − 420x7 − 54x6)H0(x)14

+ 123x8H0(x)16 + 18x9H0(x)18 + x10H0(x)20.

Consequently, the growth rate of 321-avoiding binary shrub forests is approximately 39.88873, the
greatest real root of the quartic polynomial

729x4 − 28674x3 − 15505x2 − 25758x+ 621.

Given a suitable functional equation, Bousquet-Mélou and Jehanne [3] present a way of setting
up a system of polynomial equations that can then be solved to yield a polynomial having a root
that is the desired generating function. They suggest that the “laziest approach” is to feed this
system of equations to a Gröbner basis package and let it work. Unfortunately, as they comment,
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“this lazy approach often fails, because the computation tends to take forever”. This has also been
our experience. Submission of the appropriate equations to Singular, a computer algebra system
optimized for working with polynomials, yielded no output after a week of processing.

We use a more practical strategy, derived from the results in [3] (see also Section 4 of [6]). For
the necessary algebraic manipulation, Maple [12] was used.

Proof of Theorem 2.18. To start with, since our functional equation is linear in H(x, u), it can be
expressed in the form

K(x, u)H(x, u) = P (H0(x), H1(x), H2(x), x, u),

where both K and P are polynomials that we omit for brevity and Hi(x) = ∂iH

∂ui
(x, 1).

Thus, we can use the kernel method to eliminate both H(x, u) and u. Observe that the kernel
K(x, u) = 0 if and only if P (H0(x), H1(x), H2(x), x, u) = 0. We want to eliminate u from this pair
of equations.

To do so, we calculate the resultant of K and P . The resultant of two polynomials is a monomial
multiple of a polynomial in their coefficients which has the property that it is equal to zero if and
only if the polynomials have a common root. The resultant is given by the determinant of a matrix
(known as the Sylvester matrix) whose entries are coefficients of the polynomials.

Let R be the resultant of K and P with respect to u. Then we have

R(H0(x), H1(x), H2(x), x) ≡ 32x5R1(H0(x), H1(x), H2(x), x) = 0,

where R1 is a large polynomial that cannot be factored.
To eliminate H1(x) and H2(x), the discriminant of P can be used. The discriminant of a

polynomial is a polynomial function of its coefficients which has the property that it is equal to
zero if and only if the original polynomial has a multiple root. For example, it is well known that
the discriminant of the quadratic ax2 + bx+ c with respect to x is b2 − 4ac.1

We now apply this approach twice. We do not give the polynomials involved explicitly, as they
would cover many pages. Firstly, taking the discriminant of R1 with respect to H1(x) yields a new
equation

S(H0(x), H2(x), x) ≡ S1(x)2S2(H0(x), H2(x), x)2 = 0,

where S1 is a polynomial only in x, and S2 cannot be factored further.
Then, taking the discriminant of S2(H0(x), H2(x), x) with respect to H2(x) yields

T (H0(x), x) ≡ T1(x)2T2(H0(x), x)2T3(H0(x), x)6 = 0.

where T1, T2 and T3 are polynomials. Thus both T2 and T3 are possibilities for the minimal
polynomial of H(x, 1) = H0(x).

We rule out the first choice by observing that T2(1, 0) is nonzero, whereas T3(1, 0) = 0 as is
required from considering the constant term of the series expansion of H0(x). T3 is, in fact, the

1Resultants and discriminants are closely related, the discriminant of P with respect to x being, up to a monomial
factor, the resultant of P (x) and P ′(x).
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polynomial presented in the statement of the theorem, which is the same as the minimal polynomial
that we were able to guess based on the first 250 terms of the enumeration sequence.

The growth rate of the 321-avoiding binary shrub forests is then determined from the minimal
polynomial by taking its discriminant with respect to H0(x). The growth rate is given by the
reciprocal of one of the positive real roots of the discriminant (see [7, Note VII.36, p.504]). As
the growth rate must be at least 1, the positive real root whose reciprocal gives the growth rate
must be at most 1. This leaves only one candidate, which is the greatest real root of the quartic
polynomial in the statement of the theorem.

3 Summary

Throughout this paper we have studied forests of binary shrubs that avoid any permutation pattern
of length 3. This adds a new restriction to the classical pattern avoidance problem by requiring
the digits π3i+1π3i+2π3i+3 to form a 123 or a 132 pattern for all i.

Remarkably, forests avoiding a single pattern ρ ∈ {123, 132, 213, 231, 312} are in bijection with
lattice paths in a wedge. It would be interesting to explore whether this phenomenon is more
widespread. Are other similar pattern-avoiding structures equinumerous to such lattice paths? If
so, is it possible to develop a more general theory to explain this?

In contrast to the other patterns, the enumeration of forests avoiding 321 required us to use the
machinery of analytic combinatorics. However, perhaps, in this case too, there is a connection to
lattice paths that remains to be uncovered.

One natural generalization also merits further investigation. In Theorem 2.6 and the discussion
after Theorems 2.13 and 2.15, we generalized our results to the case of k-ary shrubs rather than
binary shrubs. More of our results could be generalized in this way or to forests of tree structures
other than shrubs.

Acknowledgments

We grateful to the University of Wisconsin - Eau Claire (UWEC) Department of Mathematics
and Office of Research and Sponsored Programs for supporting work done by four of the coau-
thors at UWEC during the 2014-2015 academic year. The authors also thank Alex Burstein for
organizing the Special Session on Patterns in Permutations and Words at the spring 2015 Eastern
Sectional Meeting of the American Mathematical Society at Georgetown University, which allowed
collaboration on a then-open case in this manuscript.

References

[1] C. Banderier and P. Flajolet, Basic analytic combinatorics of directed lattice paths. Theoret.
Comput. Sci. 281(1–2) (2002), 37–80.

[2] C. Banderier and M. Wallner, Lattice paths of slope 2/5. In Proceedings of the Twelfth Work-
shop on Analytic Algorithmics and Combinatorics (ANALCO), SIAM (2015), chapter 9, 105–
113.

21



[3] M. Bousquet-Mélou and A. Jehanne, Polynomial equations with one catalytic variable, alge-
braic series and map enumeration. J. Combin. Theory Ser. B. 96.5 (2006), 623–672.

[4] M. Dairyko, L. Pudwell, S. Tyner, and C. Wynn, Non-contiguous pattern avoidance in binary
trees. Electronic J. Combin. 19.3 (2012), P22.

[5] P. Duchon, On the enumeration and generation of generalized Dyck words. Discrete Math.
225:1–3 (2000), 121–135.

[6] P. Flajolet and R. Sedgewick, Analytic combinatorics: Functional equations, rational and
algebraic functions. Rapport de recherche 4103, INRIA, January 2001.

[7] P. Flajolet and R. Sedgewick, Analytic Combinatorics. Cambridge University Press, Cam-
bridge, 2009.

[8] N. Fuss, Solutio quaestionis, quot modis polygonum n laterum in polygona m laterum, per di-
agonales resolvi queat. Nova Acta Academiae Scientiarum Imperialis Petropolitanae IX (1791),
243–251.

[9] N. Gabriel, K. Peske, L. Pudwell, and S. Tay, Pattern avoidance in ternary trees. J. Integer
Sequences 15 (2012), 12.1.5.

[10] D. Levin, L. Pudwell, M. Riehl, and A. Sandberg. Pattern avoidance in k-ary heaps. Aus-
tralasian J. Combin. 64 (2016), 120–139.

[11] N. A. Loehr, Bijective combinatorics. CRC Press, Boca Raton, 2011.

[12] Maplesoft. Maple. Version 18.01. www.maplesoft.com, 2014.

[13] The On-Line Encyclopedia of Integer Sequences. Published electronically at http://oeis.org.

[14] E. S. Rowland. Pattern avoidance in binary trees. J. Combin. Theory Ser. A 117 (2010),
741–758.
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