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ABSTRACT

Statistical seasonal prediction of tropical cyclones (TCs) has been ongoing for quite some time in many

different ocean basins across the world. While a few basins (e.g., North Atlantic and western North Pacific)

have been extensively studied and forecasted for many years, Southern Hemispheric TCs have been less

frequently studied and generally grouped as a whole or into two primary basins: southern Indian Ocean and

Australian. This paper investigates the predictability of TCs in the northwest Australian (NWAUS) basin of

the southeast Indian Ocean (1058–1358E) and describes two statistical approaches to the seasonal prediction

of TC frequency, TC days, and accumulated cyclone energy (ACE). The first approach is a traditional de-

terministic seasonal prediction using predictors identified fromNCEP–NCAR reanalysis fields using multiple

linear regression. The second is a 100-member statistical ensemble approach with the same predictors as the

deterministic model but with a resampling of the dataset with replacement and smearing input values to

generate slightly different coefficients in the multiple linear regression prediction equations. Both the de-

terministic and ensemble schemes provide valuable forecasts that are better than climatological forecasts. The

ensemble approach outperforms the deterministic model as well as adding quantitative uncertainty that re-

flects the predictability of a given TC season.

1. Introduction

Tropical cyclones (TCs) can cause substantial damage

and disrupt the regions they impact, making prediction

of these phenomena crucial for regions that can be ad-

versely affected (Harper et al. 2008). There are multiple

time scales over which forecasts can be made of TCs,

including climatic, seasonal, and individual events. This

paper focuses on the seasonal prediction of three com-

mon TC metrics: TC frequency, TC days, and accumu-

lated cyclone energy (ACE). Predictions of these

metrics can be used as a general marker for whether it is

expected that a region will have below-average, average,

or above-average activity within the TC basin.

The relationship of TC activity to the global atmo-

spheric circulation has been the subject of examination

for a long time (Ballenzweig 1959; Namias 1969; Frank

1977) and has been used to make seasonal predictions.

Specifically, seasonal TC prediction has utilized known

climate indices [e.g., Southern Oscillation index (SOI),

quasi-biennial oscillation (QBO), El Niño–Southern

Oscillation (ENSO)] to describe the current state of the

large-scale atmospheric circulation (e.g., Gray 1984a,b;

Nicholls 1979, 1984, 1985), but more recently predictors

have included primary state variables from the NCEP–

NCAR reanalysis dataset (Kalnay et al. 1996) that exhibit

high spatial correlation with TC activity (e.g., Klotzbach

and Gray 2003, 2004). Many of the predictors identified

from the NCEP–NCAR reanalysis are strongly related

to the classic climate indices and ultimately describe

the large-scale circulation in a similar fashion (e.g.,

Klotzbach and Gray 2004; Goebbert and Leslie 2010).

Most of the research on TCs, especially seasonal

prediction, occurs for regions in the Northern Hemi-

sphere. Southern Hemispheric storms, which occur in

the Indian and southwest Pacific Oceans, are not as well

covered in the literature. There are two primary TC

basins in the Southern Hemisphere: the southern Indian

Ocean basin and the Australian basin. The Australian

basin can be further separated into the northwest Aus-

tralian (NWAUS) basin (e.g., Goebbert and Leslie

2010), the southwest Pacific Ocean basin (e.g., Diamond

et al. 2013), and the Fiji region (e.g., Chand et al. 2010).

This paper will focus on the prediction of TCs within the

NWAUS basin between 1058 and 1358E (Fig. 1).
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Seasonal prediction of TC activity for particular ba-

sins began in earnest withGray (1984a,b), where he used

the QBO, a measure of ENSO, and Caribbean sea level

pressure anomalies to forecast the number of hurri-

canes, the number of hurricanes and tropical storms, and

the number of hurricane days for the upcoming season.

Using a multiple linear regression (MLR) scheme, Gray

(1984b) produced successful hindcasts of the TCmetrics.

Since that time, seasonal prediction of TC activity has

increased substantially. The methods of prediction, the

number of TC basins with seasonal prediction of TC

activity, and the number of TC metrics being predicted

have all grown (see Camargo et al. 2007a; Camargo and

Barnston 2009).

There has also been increased development of

ensemble approaches to seasonal TC activity (e.g.,

Thorncroft and Pytharoulis 2001; Chen and Lin 2013;

Villarini and Vecchi 2013) with most of these pre-

dictions using an ensemble of dynamic model output

in which they track TC activity for a variety of lead

times and forecast lengths. A purely statistical en-

semble approach to seasonal prediction of TC activ-

ity was attempted for the western North Pacific

Ocean basin by Kwon et al. (2007). The authors

successfully implemented an ensemble prediction

scheme that used three different sets of predictors to

produce the ensemble variability.

For the Australian region, seasonal prediction of TC

activity was first proposed by Nicholls (1979), and that

prediction scheme used winter (June–August) sea level

pressure in Darwin, Australia (essentially SOI), to pre-

dict the following season’s number of TCs, which begins

in November. Nicholls (1985) made changes to the ini-

tial seasonal forecasts by accounting for changes in the

reported TC database and adding forecasts for the

number of TC days. The use of SOI was operationalized

for the Australian region by Nicholls (1992), who also

accounted for changes in the historical Australian TC

database by using a first differencemethod to predict the

change in TC activity from the previous year. Nicholls

(1992, 1999) verified that seasonal prediction of Aus-

tralian TC activity using the SOI method was an im-

provement over climatology and persistence forecasts.

More recently, Wijnands et al. (2015) summarized

ongoing efforts to improve the seasonal prediction

of TCs in the Australian region through the use of

machine-learning algorithms, specifically support vector

regression. They found that the use of thismethod, along

with bias-corrected and accelerated bootstrapped con-

fidence intervals, provided the most skillful forecasts.

Additionally, since at least 2009, the Australian Bureau

of Meteorology seasonal TC outlooks have included

probabilistic chances of above- or below-average num-

bers of TCs for the entireAustralian region; the separate

western, eastern, and northern regions; as well as the

northwestern subregion (BoM 2017).

This paper builds on the work of Goebbert and Leslie

(2010) and investigates the success of a single de-

terministic MLR scheme and a new statistical MLR

ensemble approach for producing seasonal forecasts of

TC frequency, TC days, andACE. To assess the skill of a

seasonal prediction scheme it is considered best practice

to employ more than one measure (Camargo et al.

2007a). Therefore, the skill of the deterministic pre-

diction scheme is assessed using mean absolute error

(MAE), Pearson r correlation, and 3 3 3 contingency

tables. The skill of the ensemble prediction scheme is

evaluated using the rank probability score, rank proba-

bility skill score, and multicategory reliability diagrams

(Hamill 1997). Forecasts using the two methods show

clear skill over the standard climatological forecast and

perform as well or better that other seasonal TC pre-

diction schemes for the NWAUS basin. In addition, the

new ensemble statistical approach offers a simple and

computationally inexpensive method for producing high

quality, robust seasonal forecasts.

2. TC and predictor data

Australian region observations of TCs date back to

the nineteenth century; however, the reliability of the

Australian region TC data only dates back to 1970

(Holland 1981) with the onset of the satellite era in the

region. In the Australian region a TC is defined when

10-min sustained winds reach 17m s21 (33 kt; where

1 kt 5 0.51ms21), and additionally, the severity can be

broken down into five different categories (BoM 2010).

There are a number of TC databases that cover the

FIG. 1. Map of the Australian region with NWAUS identified

between the dashed lines [based on Fig. 1a in Goebbert and Leslie

(2010)].
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NWAUS region including those of the Joint Typhoon

Warning Center, the Bureau of Meteorology, and the

International Best Track Archive for Climate Steward-

ship (IBTrACS). This paper uses the dataset presented

by Harper et al. (2008) for its consistency of observation

and overall quality, specifically for the NWAUS region,

with the years since that dataset was published added

manually by the author. The dataset was developed

through a reanalysis effort lead by Woodside Energy

Ltd. in an effort ‘‘to address concerns regarding the ac-

curacy and consistency of the official BoM database and

to also assemble additional critical storm-scale data,

such as radius of gales and eye diameter, that were not

available from the official database’’ (Harper et al.

2008). As of the 2015/16 season, the average number of

TCs for the NWAUS basin is 5.3, with an average of

40.75 TC days and an average ACE of 27 3 104 kt2. A

summary of many more TC metrics for the NWAUS

basin, based on the Harper et al. (2008) dataset, can be

found in Goebbert and Leslie (2010).

Potential predictors are chosen from the NCEP–

NCAR reanalysis dataset using only the class A vari-

ables as they are strongly influenced by observational

data and are considered to be the most reliable (Kalnay

et al. 1996). The predictors are chosen as geographical

regions with areal extents greater than 58 latitude 3 58
longitude that have high correlation (greater than 0.5 in

magnitude) to the TC metric over at least a 3-month

period, similar to that of Klotzbach and Gray (2004).

The NCEP–NCAR reanalysis variable (e.g., air tem-

perature at 1000hPa) is averaged over that geographic

region for a 3-month period to compose the yearly time

series that will be used as a predictor. Goebbert and

Leslie (2010) offer a detailed discussion on the use of

NCEP–NCAR data for seasonal prediction in the

NWAUS region rather than typical climate indices such

as SOI, which are commonly used for seasonal pre-

diction in the Australian region.

3. Predictor selection and model development

a. Deterministic prediction

Potential predictors are used to develop a prediction

equation using the MLR statistical method. Multiple

linear regression schemes have been previously de-

veloped for other TC basins (e.g., Klotzbach and Gray

2003, 2004) and are a relatively simple approach to

seasonal TC prediction. Amajor issue forMLR schemes

is that the choice of predictors can overfit the pre-

dictand. To reduce the impact of this issue, potential

predictors were removed if they had a cross correlation

of greater than magnitude 0.3 with another predictor. If

such cross correlation occurred, the predictor with the

higher correlation to the TC metric was retained. Then,

the predictors were further narrowed through a stepwise

regression to minimize the number of predictors and

maximize the variance explained by those predictors

using the Akaike information criteria (AIC). This is

done to produce the best compromise between a well-fit

model while using the fewest number of predictors to

describe the variance of the predictand.

The selection of predictors for each TC metric is

completed using the same method. A summary of the

selected predictors for the various TCmetrics is found in

Table 1. Goebbert and Leslie (2010) give a thorough

discussion of the variability of NWAUS TC activity in

relation to potential predictors including known climate

indices and NCEP–NCAR reanalysis data. In general,

the predictors chosen describe variations in the global

TABLE 1. Predictors used for TC frequency, TC days, and ACE. The sign indicates the predictor’s impact on the next season’s forecasted

TC metric.

Predictors Description Location

TC frequency

NA700 (2) April–June 700-hPa geopotential height over North America 358–458N, 82.58–102.58W
HI850 (2) May–July 850-hPa air temperature over Hawaii 108–208N, 132.58–1558W
SIND850 (1) May–July 850-hPa geopotential height over the south Indian Ocean 42.58–54.58S, 508–708E
SATL925 (2) June–August 925-hPa geopotential height over the South Atlantic Ocean 208–308S, 08–12.58W
EPAC925 (2) June–August 925-hPa geopotential height over the east Pacific Ocean 158–27.58N, 1158–1308W

TC days

SPAC100 (1) January–March 100-hPa y component of the wind over the South Pacific Ocean 408–658S, 1408–1708W
NA850 (2) April–June 850-hPa geopotential heights over North America 308–508N, 808–1058W
SATL1000 (2) July–September 1000-hPa geopotential heights over the South Atlantic Ocean 58–458S, 358W–108E

ACE

AK100 (1) February–April 100-hPa air temperature over Alaska 42.58–67.58N, 1058–1558W
CN150 (2) April–June 150-hPa u component of the wind over Canada 458–658N, 608–1258W
SEATL1000 (2) June–August 1000-hPa geopotential heights over the southeast Atlantic Ocean 7.58–458S, 208W–158E
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circulation pattern that relate to the variability of the TC

metric being predicted.

Many of the chosen predictors correlate to some

extent with one or more of the established climate in-

dices. For example, the NA700 TC frequency predictor

(Table 1) has a weak correlation with the Arctic Oscil-

lation (r5 0:33), a measure of ENSO (Niño-4; r5 0:34),

and the QBO (r520:33). Other variables do not have

any strong correlation among common climate indices.

For example, the SPAC100 TC days predictor (Table 1)

does not correlate highly with any common climate in-

dex with a coefficient greater than magnitude 0.3. At

least one predictor for each TC metric has a correlation

of greater than magnitude 0.3 with an ENSO climate

index. Further work on understanding the physical re-

lationships between the predictors and known global

atmospheric patterns is needed.

To accurately assess the skill of a potential prediction

equation, it is imperative that the predicted year not be a

part of the development dataset. This is easily accom-

plished by removing that year from the development

dataset, then making the hindcast prediction for that

year. However, TC frequency is autocorrelated from

year to year with a 1-yr lag correlation greater than 0.3

for the NWAUS region. This autocorrelation could

artificially inflate the accuracy of the prediction equa-

tion. Therefore, instead of leaving out just the year that

is being predicted, an additional year is removed on ei-

ther side of the predicted year (e.g., if the prediction for

1981 is desired, the development data would exclude the

years 1980, 1981, and 1982), which will be referred to as

the leave-three-out hindcast method in this paper

(Elsner and Schmertmann 1994). For a limited dataset

this provides some degree of data independence when

constructing the prediction equation, in order to account

for the autocorrelation present in TC occurrence. Even

with this attempt to remove the influence of autocorre-

lation to more accurately assess the skill of the pre-

diction equation, there likely remains artificial skill due

to using all of the years in the development dataset in

choosing the initial list of predictors from reanalysis

correlations.

Another important consideration to make when de-

veloping an MLR prediction equation involved the

number of years of development data needed to ade-

quately describe the variance of the predictand. There

are 46 years’ worth of available data to draw from for the

development of the prediction equations. The root-

mean-square error (RMSE) is employed to measure

the skill of the prediction scheme using different sizes of

the development dataset. Using the leave-three-out

hindcast method and the RMSE, the number of years

used in the development dataset was varied between 5

and 35 years to determine theminimum number of years

needed to provide a stable prediction (Fig. 2). Having

too few years in the development dataset provides in-

sufficient variance to the MLR scheme to accurately

hindcast the variability of the predictand. For the pre-

diction of the number of TCs, there was a sharp decrease

in RMSE as the development length increased, but this

pattern eventually leveled off when the development

dataset contained 28 or more years (Fig. 2). Therefore,

in this study the development dataset for TC frequency

contains the 28 years from 1970 to 1997. A similar pat-

tern exists for TC days and ACE, which yielded devel-

opment datasets of 32 and 25 years, respectively.

b. Ensemble prediction

Ensemble prediction has been around for a long time

and used in many different fields; in meteorology it has

primarily been used in conjunction with numerical

weather prediction models. There has been limited use of

ensemble approaches for the seasonal prediction of TCs,

and those that have been created primarily used dynam-

ically based ensembles (e.g., Belanger et al. 2010, 2012),

which count the number of TCs occurring during a season

through the multiple deterministic model runs. A statis-

tical ensemble approach was introduced by Kwon et al.

(2007) using a large set (;50) of geographically averaged

reanalysis variables (e.g., 500-hPa geopotential heights,

850-hPa temperature) as predictors. These predictors

were then placed into three groups, andwithin each group

10 predictions were made to constitute the ensemble. The

prediction equations were then simple regression equa-

tions between the predictand and the predictor. This en-

semble approach improved the forecast ability of the

deterministic predictions of Lee et al. (2007), from which

the ensemble was developed.

This study follows the approach of Frank and

Pfahringer (2006), who generated an ensemble by both

subsampling the development years from the broader

set of data with replacement (bagging) and adding noise

to the input values (input smearing). The primary goal of

bagging and smearing is to provide the ensemble pre-

diction scheme with sufficient dispersion to obtain a

well-calibrated prediction method. First, the 30-yr pre-

dictor set (1970–99) is resampled with replacement to

generate a bagged set of predictors. Second, the training

values are smeared (asmeared) by adding Gaussian noise

to each variable aoriginal:

a
smeared

5 a
original

1 p3N(0,s
a
), (1)

where sa is the standard deviation of the original vari-

able from the predictor set, N is the Gaussian normal

distribution, and p is a specified smearing parameter.
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This is done for each development predictor variable

and for all prediction equations. Additionally, the pre-

dictor variables for a given year are also smeared ac-

cording to Eq. (1) before being used to make a

prediction. The selection of the smearing parameter can

be completed by a systematic grid search over a range of

values (Frank and Pfahringer 2006) to ensure that ade-

quate dispersion is achieved when selecting the value.

The determination of the smearing parameter p in

Eq. (1) was found empirically by systematically search-

ing smearing values [similar to the process of Frank and

Pfahringer (2006)] from 0.5 to 1.5 to obtain a value that

produced a well-calibrated prediction scheme by pro-

viding adequate dispersion to the ensemble system.

A well-calibrated ensemble method with appropriate

levels of dispersion can be demonstrated by the fore-

casted quantile falling along the unity line of a multi-

category reliability diagram (Hamill 1997). Additionally,

the calibration can also be measured by the sum of the

absolute distance from each forecast quantile to the

quantile of the forecast distribution (i.e., the distance

the calibration is from the line y5 x). As a result, there

was usually a range of smearing parameter values that

had similar category errors and were well calibrated; as a

result, the lowest value was retained as the smearing

parameter value.

The ensemble prediction scheme for TC frequency is

used as an example to illustrate the work flow of this

process (Fig. 3). For ensemble prediction of TC fre-

quency, the development dataset is set to 36 years

(1970–2005), from which 28 years are chosen (with re-

placement; bagged) and then those bagged predictors

are smeared to determine the MLR prediction equation

coefficients. For hindcasting the years 1970–2005, the

leave-three-out prediction method is used just as in the

singleMLR scheme. This procedure is repeated 100 times

to create an ensemble of prediction equations, all with

varying coefficients for the MLR equations. Then, the

predictors for the year being predicted are first smeared,

then input into each of the equations in the ensemble,

resulting in many (e.g., 100) predictions of TC frequency.

This ensemble approach yields a forecast that provides

users some measure of uncertainty for the forecast of

TC frequency. This same procedure can be followed to

FIG. 2. A plot of the number of years used in the development prediction scheme and its reportedRMSEs for (a) TC

frequency, (b) TC days, and (c) ACE.
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predict any TCmetric. The remaining years (2006–16) are

predicted using the same method and are independent of

the development dataset.

4. Results and discussion

a. Deterministic prediction

Through the leave-three-out method, deterministic

hindcast predictions were made for TC frequency from

1970 to 1998 and predictions from the stable develop-

mental dataset from 1999 to 2016 (Fig. 4a). The de-

terministic MLR forecast equation for TC frequency

that results from the 28 years of development data is

TC
freq

5 5:57142 0:88423NA7002 0:5762

3HI8501 0:58673SIND85020:8045

3 SATL9252 0:46073EPAC925, (2)

where the five predictors are described in Table 1. The

forecasted TC frequency appears to align well with the

observed values over the entire dataset, with a Pearson

correlation coefficient of r5 0:83 and an MAE of 1.04.

This is an improvement over using climatology or per-

sistence as the forecast for the region, which have MAE

values of 1.80 and 2.22, respectively. The skill score of

the deterministic MLR forecast can be calculated as an

improvement over a reference forecast (e.g., climatol-

ogy) through the following equation:

SS5 12
MAE

MAE
Ref

, (3)

where MAERef is the reference forecast MAE (Wilks

2005). For the deterministic TC frequency prediction

there is a 42% improvement over a climatological

forecast (Table 2).

TheMAEvalues and subsequent skill score are based on

46years of hindcasts and may not represent the true sta-

tistic. Utilizing a bootstrap technique based on Efron and

Tibshirani (1994), a 95% confidence interval can be calcu-

lated to verify that the MAE from the deterministic TC

prediction scheme is significantly different from the MAE

of the climatological prediction. The confidence interval

obtained using the bootstrap technique, with 5000 replica-

tions, yields an MAE range from 0.84 and 1.24 for the de-

terministic model and from 1.42 to 2.22 for a climatological

forecast. With no overlap in the confidence intervals, the

two predictions come from different populations, and the

deterministic forecasts of TC frequency are significantly

better than using climatology as the forecast. This is further

confirmed by a standard two-sided t-test statistic computed

between the absolute error of the deterministic and clima-

tological predictions.Doing so yields a test statistic of23.23

and a p value of 0.002, indicating that the two population

means are significantly different at the 1% level.

For the deterministic TCdays prediction, hindcasts were

made from 1970 to 2004, with independent predictions

from 2005 to 2016 (Fig. 4b). The deterministic MLR

FIG. 3. A flowchart representing the workflow of developing the statistical ensemble

predictions of TC metrics.
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forecast equation for TCdays that results from the 32years

of development data is

TC
days

5 43:6481 7:4313 SPAC1002 7:930

3NA8502 10:8473 SATL1000, (4)

where the three predictors are described in Table 1. The

Pearson correlation coefficient for the deterministic

MLR prediction of TC days was r5 0:79, and the MAE

was 9.92 days with the climatological prediction MAE

being 14.78 days, which yielded a skill score for the de-

terministic forecasts of 33% (Table 2). The 90%

confidence intervals of MAE values for the de-

terministic MLR range from 8.33 to 11.83 and for cli-

matological forecasts from 12.14 to 18.28. With no

overlap in the confidence intervals, the two predictions

come from different populations, and the deterministic

forecasts of TC days are significantly better than using

climatology as the forecast, although at a lower level of

confidence than for the predictions of TC frequency. A

two-sided t-test statistic between the deterministic and

climatological forecasts was 22.25 and had a p value of

0.03, indicating that the two population means are sig-

nificantly different at the 5% level.

TABLE 2. Summary of MAEs for the deterministic and ensemble prediction equations for TC frequency, TC days, and ACE (31024).

Additionally, the MAEs for forecasts of climatology, persistence, and the skill score (SS) of the deterministic forecasts against the

reference forecast of climatology are also given for each TC metric studied.

MAE by forecast method

Deterministic Climatology Persistence SSClimo

TC frequency 1.04 1.80 2.22 0.42

TC days 9.92 14.78 19.46 0.33

ACE (31024) 9.57 12.69 15.06 0.25

FIG. 4. Observed (black) and forecasted (dashed gray) TC metrics for the NWAUS basin

from 1970 to 2015 with Pearson’s r correlation coefficients between the deterministic forecast

and the actual observations for (a) TC frequency, (b) TC days, and (c) ACE.
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Deterministic ACE prediction used the leave-three-

out method to hindcast the predictions from 1970 to

1994 and independent predictions from 1995 to 2016

(Fig. 4c). The deterministic MLR forecast equation

for ACE that results from the 25 years of development

data is

ACE5 28:33301 4:63533AK1002 6:4760

3CN1002 5:25153 SEATL1000, (5)

where the three predictors are described in Table 1, and

the intercept and predictor coefficients are scaled by

1024. The Pearson correlation coefficient for the de-

terministic MLR prediction of ACE was r5 0:68, and

for MAE it was 9:63 104 kt2, with a climatological pre-

diction MAE of 12:73 104 kt2. The ACE skill score for

the deterministic forecasts was 25% (Table 2), the low-

est of the three predicted TC metrics. The 90% confi-

dence intervals of MAE values for the deterministic

MLR range from 8.0 3 104 to 11.3 3 104 kt2, and the

climatological forecasts range from 10.63 104 to 15.13
104 kt2. In this case the confidence intervals overlap,

and a direct determination cannot be made of whether

the hindcast predictions made using the deterministic

forecast equation is significantly better than a prediction

using climatology. The two-sided t test yields a test sta-

tistic of 21.85 and a p value of 0.07, indicating that the

two population means are significantly different at the

10% level. Thus, the deterministic ACE prediction

equation developed in this study performs better than

when using climatology as the prediction.

Forecast skill can also be assessed through forecast

contingency tables, and this study utilized 3 3 3 con-

tingency tables to examine below-average, average,

and above-average seasons for given TC metrics. A

below-average season is defined as the bottom third of

the observed TC metric, an average season is the

middle third, and an above-average season is the top

third. For TC frequency a season is below average if

less than five TCs occur, an average season is the oc-

currence of five or six TCs, and an above-average

season has seven or more TCs (Table 3). For TC

days a season is below average if less than 32 TC days

occur, an average season is the occurrence of 32–45 TC

days, and an above-average season has 45 or more TC

days (Table 4). Below-average seasonal ACE is de-

fined as values less than 19 3104 kt2, average between

19 3 104 and 313 104 kt2, and above average when

values exceed 313 104 kt2 (Table 5).

Categorical forecast skill is assessed via the Pierce

skill score (PSS; Wilks 2005), which uses an unbiased

random forecast to determine the skill of the forecast.

For the deterministic TC frequency predictions the PSS

was 0.421, and the reference forecasts of climatology

and persistence yielded scores of 0.00 and 0.028, re-

spectively. The deterministic TC days prediction

yielded a PSS of 0.443, with a climatological prediction

PSS of 0.00 and persistence PSS of 0.033. The de-

terministic ACE prediction had a lower PSS than either

the deterministic TC frequency or TC days predictions

at 0.252, and the climatology and persistence scores are

0.00 and 20.033, respectively.

TABLE 3. The 33 3 contingency table of deterministic and ensemble forecasts of TC frequency, where below average is a season with

fewer than five TCs, an average season is five or six TCs, and an above-average season has seven or more TCs. Ensemble forecasts are

presented as the percentage of ensemble members occurring in each category.

Deterministic forecast Ensemble forecast

Observed Observed

Forecast Below avg Avg Above avg Below avg Avg Above avg

Below avg 5 3 0 11 9 1

Avg 4 16 5 8 31 10

Above avg 0 4 9 0 10 20

TABLE 4. As in Table 3, but for TC days where a below-average season is one with fewer than 32 TC days, an average season is 32–45 TC

days, and an above-average season has more than 45 TC days.

Deterministic forecast Ensemble forecast

Observed Observed

Forecast Below avg Avg Above avg Below avg Avg Above avg

Below avg 9 3 1 15 6 2

Avg 6 6 1 12 13 8

Above avg 0 6 14 6 13 25
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Overall, the deterministic forecasts for TC frequency,

TC days, and ACE all performed better than a clima-

tological or persistence forecast. Thus, these types of

forecasts would provide valuable guidance to stake-

holders in the NWAUS basin on the TC activity in that

region before the beginning of the season. Based on the

chosen predictors, forecasts can be made for TC fre-

quency and ACE in September (once the August data

are available) and TC days in October. The NWAUS

basin season runs from November to April, so the pre-

dictions give a 1–2-month lead time before the begin-

ning of the season and an even longer time before

the average start date, which is Julian day 352 (i.e.,

18 December).

The deterministic MLR equations developed and

used in this study achieve the same or greater forecast

skill compared to other forecasts for the entire Austra-

lian basin and other basins across the world. To place the

MAEs of the deterministic predictions in perspective,

the results are compared to those of Nicholls (1985),

Wijnands et al. (2015), McDonnell and Holbrook

(2004a,b), and Klotzbach and Gray (2009).

For the entire Australian region (1058–1658E),
Nicholls (1985) constructed a linear regression equation

using July–September Darwin sea level pressure and

obtained an MAE of 9.4 days, compared to an MAE

of 9.74 days for the deterministic MLR scheme used in

this study. He obtained similar MAE values for both

climatological and persistence forecasts (12.7 and

19.5 days, respectively), to the values obtained for this

study (14.37 and 19.8 days, respectively). The skill of

these forecasts is likely a little better as a result of only

using a leave-one-out cross validation on the hindcast

predictions. Additionally, ENSO indices (e.g., Niño-3.4
SSTs, Niño-4 SSTs, Darwin pressure) are more strongly

correlated with TC activity over the entire Australian

region (Ramsay et al. 2008, see their Fig. 3) than for the

westernAustralian basin (Goebbert and Leslie 2010, see

their Fig. 7).

Recently, Wijnands et al. (2015) constructed seasonal

forecasts of TCs in various regions of the Australian

basin including a region very similar to the NWAUS

region (their AR-W region). The scheme that had the

lowest MAE was a seasonal prediction of TC frequency

using support vector regression, and they achieved an

MAE of 1.27 for their hindcast predictions from 2003 to

2012. The deterministic MLR scheme developed in this

paper outperforms that over the entire hindcast range

(Table 2), but has a very similar MAE of 1.3 when

comparing the same forecast years. One advantage of

the deterministic scheme developed here is that a fore-

cast of similar quality (in terms of MAE) can be made at

the beginning of September, as opposed to the begin-

ning of November for their scheme, with predictors that

contain data only from October.

McDonnell and Holbrook (2004a,b) used a Poisson

regressionmethod to predict the occurrence of TCs over

the entire Australian region by dividing the region into

28 latitude 3 58 longitude cells and forecasting the oc-

currence in those cells. While many of their predictions

covering the Australian basin were able to improve on a

forecast of climatology (see their Table 3), for their

western region (1058–1258E) they were not able to pro-

duce successful seasonal predictions of TC activity and

saw only slight improvements for their northern region

(1258–1458E), which also covers part of the NWAUS

region defined in this study.

The deterministic prediction equations developed in

this study obtained skill on par with or better than

similarly developed prediction equations for other ba-

sins. For example, the verification statistics (1984–2008)

for the forecasts for the North Atlantic Ocean (Klotzbach

and Gray 2009) yielded a skill score over climatology

of 29% for named tropical storms and 15% for named

tropical storm days for their June forecasts of the on-

coming TC season. Klotzbach andGray (2009) have also

issued forecasts in early August from 1984 to 2008, up-

dating their previous forecasts. These forecasts per-

formed slightly better than the June forecasts as the

calculated skill scores for named tropical storms was

31% and for named storm days it was 22%.

b. Ensemble prediction

Using the ensemble approach for the seasonal pre-

diction of TCs allows for probabilistic forecasts of TC

metrics to provide a more thorough evaluation of the

TABLE 5. As in Table 3, but for ACE where a below-average season is a season with less than 19 3 104 kt2, an average season is from

19 3 104 to 31 3 104 kt2, and an above-average season is greater than 31 3 104 kt2.

Deterministic forecast Ensemble forecast

Observed Observed

Forecast Below avg Avg Above avg Below avg Avg Above avg

Below avg 6 6 0 15 11 2

Avg 7 6 4 15 12 12

Above avg 3 4 11 5 9 19

DECEMBER 2017 GOEBBERT 2125



forecasted TCmetric. Instead of a single forecast for TC

frequency (e.g., a prediction of four TCs for the up-

coming season), an ensemble with 100 members can

yield probabilistic information about the number of TCs

that will occur in a season. For example, an ensemble

might have 48 members out of 100 that predict four or

more TCs for the upcoming season. This potentially aids

the forecast end user by offering more information

about a range of forecasted values, similar to other en-

semble forecasts.

An example of a seasonal TC frequency forecast from

the ensemble method used in this paper is illustrated in

Fig. 5 for the TC season from November 1987 to April

1988. This season had a large range in the number of

predicted TCs, from as few as one to as many as seven.

The forecast can then be expressed as a percent chance

of a given number of TCs for the 1987 season (e.g., a 36%

chance that there will be four TCs). An end-user then

has a more clear understanding of the inherent un-

certainty of the forecasted value.

Similarly, the forecast can also give a probabilistic

value to whether it is expected that the seasonal TC

metric will be below average, average, or above average.

For the 1987 TC season (Fig. 5) there is a 70% chance

that the season will have a below-average number of

TCs (four or fewer TCs), a 29% chance that there will be

an average number of TCs (five or six TCs), and a 1%

chance that there will be an above-average number of

TCs (seven or more TCs). There was only one TC that

occurred during the 1987 NWAUS TC season, which

verifies the 70% chance that the season will have a

below-average number of TCs.

Despite the fact that only three of the ensemble

members predicted only one TC occurring in 1987

(Fig. 5), the scheme correctly identified the fact that

there was a very high likelihood that there would be a

below-average number of TCs. It should not be too

surprising that the scheme did not have a large number

of predictions for a single TC occurrence as that has only

happened once in the development dataset (1987), and

the very nature of the MLR scheme makes it difficult to

predict the extreme values that are rarely (or not oth-

erwise) observed in the dataset, as that is where as-

sumptions under which MLR schemes operate (e.g.,

normality, linearity) begin to break down.

The ensemble predictions of TC frequency result in

some years having larger predictive ranges and others

having much smaller ranges (Fig. 6) over the 46 years of

hindcasts with the ensemble prediction system. For TC

frequency the systematic search for an appropriate

smearing parameter yielded a value of 0.65. The cali-

bration of the scheme appears good (Fig. 7a), with an

average category error of 1.33, except for the lowest and

highest quintiles. This is likely inherent from using

MLR, which makes predicting extreme values difficult.

This is better than the climatological forecast, which

while well calibrated had an average category error of

2.44 (Fig. 7b).

To assess the skill of ensemble predictions, an ap-

propriate scheme for scoring probabilistic predictions is

needed. The rank probability score (RPS; Epstein 1969;

Murphy 1969, 1971) is one such scheme that can be ap-

plied to ordered, multicategory predictions and is used

here as defined inWeigel et al. [(2007), see their Eq. (1)]

for both the ensemble probabilistic predictions and

reference predictions using climatology. Then, from the

RPS, a rank probability skill score (RPSS; Weigel et al.

2007) can be computed for the ensemble predictions of

TC frequency, TC days, and ACE in the same fashion as

the skill score using MAE with Eq. (3).

The ensemble TC frequency prediction scheme ob-

tained an RPS of 2.33, with the climatological probabi-

listic prediction garnering an RPS of 3.87 (Table 6). This

yields an RPSS for the ensemble prediction over a cli-

matological prediction of 0.40, indicating an improve-

ment in forecast skill of 40% for the ensemble prediction

scheme developed in this paper. Similarly, the skill of

the ensemble prediction scheme can bemade based on a

three-category prediction of below-average, average,

and above-average TC frequency. The calculated RPS

of the ensemble prediction system is 3.88 whereas the

climatological prediction yields an RPS of 10.0, and

the ensemble prediction system improves on climatol-

ogy by 61%.

To compare the ensemble and deterministic pre-

dictions, the deterministic prediction can be assumed to

be a probabilistic forecast with all 100% predicted in a

single category (e.g., a prediction of five TCs) and then

FIG. 5. Bar chart of the 100 ensemble predictions of TC fre-

quency for 1987 with the number of times the ensemble scheme

predicted the individual values plotted above the bar.
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measured using the RPS. Doing so yields an RPS of 3.2

for the deterministic prediction of TC frequency and an

improvement over the climatological prediction of 17%

(Table 6). Comparing the ensemble and deterministic

predictions of TC frequency with this metric indicates

superior performance of the ensemble system.

The ensemble predictions for TC days performed well

over the 46 years of hindcast predictions (Fig. 8), using

a smearing parameter of 0.75, which produces a well-

calibrated forecast (Fig. 9a) with an average category

error of 2.47 compared with the climatological prediction

average category error of 3.58 (Fig. 9b). TC days were

assessed in bin lengths of 5 days (e.g., 0–5, 5–10, and 15–20),

which yields approximately 21 forecast categories. As with

the TC frequency ensemble predictions, there is a notice-

able difference in the spread of the ensemble in different

years. There were some years (e.g., 2008) where the actual

number of TCdays for that year fell outside of the ensemble

spread (Fig. 8); the trend in the forecast is in generally good

agreement with the observations. The ensemble TC days

FIG. 6. Ensemble predictions of TC frequency from 1970 to 2016 with the ensemble pre-

dictions represented as box-and-whisker plots of each year, where the box represents the

inner quartile range, and the whiskers are at 5% and 95% of the forecasted members. Those

forecasts falling outside of the middle 90% are considered outlier forecasts and are labeled

with red plus (1) signs. The deterministic forecasts are cyan-colored circles, and actual ob-

servations are labeled as blue stars connected by a line.

FIG. 7. Multicategory reliability diagram for (a) ensemble seasonal prediction of TC frequency and

(b) climatological probabilistic prediction of TC frequency. The dashed gray line represents the perfect forecast

line. Error bars represent the 90% confidence interval of the forecast as determined by use of a conventional

bootstrap approach. Insets are the frequencies of category error for each forecast/observed quantile pair with

darker shading representing larger percentages of frequencies in that cell.
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prediction had an RPS of 2.85 categories, and the climato-

logical prediction had an RPS of 4.09 categories (Table 6).

This yields an improvement over climatological prediction

of 30% by using the ensemble prediction scheme for TC

days, whereas the deterministic prediction RPS was 3.75

categories and only a 7% improvement over the climato-

logical prediction.

Similarly, the number of categories can be reduced to

three (below average, average, above average), and the

RPS assessed for this reduced category prediction. The

calculated RPS of the three-category ensemble pre-

diction scheme was 2.94 categories whereas the clima-

tological prediction yields an RPS of 8.33, and the

ensemble prediction system improved on climatology by

54%. The RPS of the deterministic prediction scheme

was 5.67 for the three-category prediction and improved

on the climatological prediction by 43%.

The ensemble predictions for ACE also performed

well for all 46 years (Fig. 10), using a smearing param-

eter of 0.85, which produces a well-calibrated forecast

(Fig. 11a) with an average category error of 1.18 com-

pared with the climatological prediction average cate-

gory error of 1.94 (Fig. 11b). However, the calibration is

not as good overall for ACE as it was for TC frequency

and TC days. The predictions resulted in RPS values of

the ensemble that were similar to the deterministic

predictions (Table 6) but generally had larger ranges in

the predicted values for any given year compared to the

predictions of TC frequency or TC days. Similar to the

TC days prediction, the prediction scheme is assessed

categorically using a bin lengths of 10 (e.g., 0–10, 10–20),

when the predictions are scaled by 1024. TheRPS for the

ensemble ACE forecasts was 2.97 categories (Table 6),

with 3.75 categories for the climatology, with the en-

semble producing a 21% improvement over the refer-

ence forecast of climatology. The deterministic prediction

RPS was 4.09 categories and is not an improvement over

the climatological forecast.

Using only the three category bins of below average,

average, and above average yields substantially better

results for the ensemble ACE prediction scheme. The

three-bin ensemble prediction yielded an RPS of 2.07

categories; the climatology prediction had an RPS of

12.0, which is an improvement over climatology of 83%.

The ensemble TC frequency scheme can be compared

to the probabilistic forecasts produced by theAustralian

BoM for the seasons 2009–16 (Table 7). The ensemble

scheme made accurate predictions in 7 out of the 8 yr,

only missing the forecast in 2012 when the actual num-

ber of TCs was five. This was not a particularly bad

prediction as the scheme gave nearly equal chances to

above- or below-average TC frequencies, 48% and 52%,

respectively. The forecasts from the Australian BoM

were correct in 4 out of the 8 yr, again with a relatively

TABLE 6. Summary of RPS results for the ensemble and deterministic prediction equations for TC frequency, TC days, and ACE.

Additionally, the RPS results for forecasts using climatology are given as well as the RPSSs of the ensemble forecasts against the reference

forecast for each TC metric studied.

RPS by forecast method

Ensemble Deterministic Climatology RPSSClimo

TC frequency 2.33 3.20 3.87 0.40

TC days 2.85 3.75 4.03 0.30

ACE 2.97 4.09 3.75 0.21

FIG. 8. As in Fig. 6, but for TC days.
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good prediction for 2012 and for other missed forecasts

except for 2016. In general, the ensemble scheme ap-

pears to have a more dynamic range in predicted per-

centages when compared to the BoM forecasts, and the

forecast percentages appear to better reflect the ob-

served TC frequency.

The support vector regression scheme produced by

Wijnands et al. (2015) also created 90% confidence in-

tervals through bootstrapping to give a range of forecast

values, similar to an ensemble prediction. For their

western region the observed TC frequency fell outside

of their forecast intervals in two of the eight predicted

years. The ensemble scheme developed in this paper

had a slightly better record over the same period with

only one forecast falling outside of its 90% confidence

interval. Additionally, these two schemes appear to be

of similar quality with MAEs of 1.33 (Fig. 7) for the

ensemble scheme and 1.27 for the support vector re-

gression scheme. An advantage of the ensemble scheme

is the forecast can be produced 2months earlier than

that of Wijnands et al. (2015), allowing for more time to

prepare before the onset of the TC season.

There is some level of uncertainty associated with any

prediction, including statistical seasonal prediction of

TCs. While traditional ensemble methods have existed

for a long time, they have not been routinely used in

statistical prediction methods, such as the seasonal

prediction of TCs for a particular TC basin. The en-

semble method developed in this paper yields forecasts

that have an appropriate spread of forecasts, while

producing forecasts that are a substantial improvement

over the classic reference forecast of climatology. Using

the RPSmetric, it is also clear that the ensemble method

is an improvement over the deterministic approach and

FIG. 9. As in Fig. 7, but for TC days ensemble prediction.

FIG. 10. As in Fig. 6, but for ACE.
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conveys more information, which can aid end users in

their decision-making processes.

5. Conclusions

Seasonal prediction of TC activity has been ongoing in

the Australian region since the late 1970s, but the

NWAUS basin has received relatively little attention as it

is usually aggregated into the entireAustralian region or a

larger subbasin prediction. This paper described a de-

terministic MLR seasonal prediction scheme for the

NWAUS basin that has skill in predicting TC frequency

and TC days, with lower skill for ACE. Bootstrapped

MAE results indicate that the forecasts for TC frequency

and TC days were statistically better than a climatological

forecast for the basin at the 95% and 90% levels, re-

spectively. While the confidence interval of MAE for

ACE slightly overlaps with the climatological prediction

confidence interval, further statistical tests indicated that

the prediction was from two different populations, and

therefore, the deterministic MLR method was an im-

provement over a climatological forecast.

Additionally, a new statistical ensemble approach to

forecasting TC activity in the NWAUS region has been

presented. In this approach, 100 deterministic MLR

equations were developed by bagging and smearing the

development dataset; these equations were then used to

forecast the TC metrics. The forecast skill of the en-

semble approach was higher than that of the de-

terministic prediction (as measured by the RPS), and all

TC metric prediction schemes performed better than

climatology. The added benefit of the ensemble pre-

diction was that the usually implied uncertainty in a

seasonal forecast now has some direct uncertainty

values associated with a particular forecast. The result of

the ensemble prediction gives a range of possible values

for the forecasted TC metrics, which inherently gives

valuable information about the confidence of the

prediction.

The challenge in assessing the skill of these seasonal

predictions was the inherent limitation due to using a

small dataset (46 years). However, that concern was

taken into account through using the leave-three-out

method to hindcast the years in the development data-

set. Despite using the leave-three-out method, there

likely remains a certain amount of artificial skill due to

the method of selecting the predictor variables and by

choosing a smearing parameter that ensured adequate

model dispersion. Despite these caveats, the techniques

described in this paper appear to be a substantial im-

provement over using climatology as the basis for fore-

casting TC activity in the basin.

FIG. 11. As in Fig. 7, but for ACE ensemble prediction.

TABLE 7. Comparison of probabilistic TC forecasts from

Australian BoM and the ensemble seasonal prediction scheme

for the NWAUS region. The forecast is the percent chance of at

least an average number of TCs occurring in a season. Correct

forecasts are set in boldface.

Year

Avg No.

of TCs

BoM

(%)

Ensemble

(%)

No. of

observed TCs

2009 6 44 24 4

2010 6 67 40 5

2011 5 60 99 6

2012 5 42 48 5

2013 5 55 39 3

2014 5 38 18 4

2015 5 15 9 1

2016 5 63 34 3

2130 WEATHER AND FORECAST ING VOLUME 32



In general, the forecasts produced by the determinis-

tic and ensemble schemes performed as well, if not

better, than other prediction schemes for the same basin.

The advantage of the schemes developed here is in the

simplicity of the statistical technique coupled with the

ability to forecast the TCmetric one or twomonths prior

to the beginning of the TC season. Limitations of the

prediction schemes include the uncertainty in our

physical understanding of the individual predictors as

well as their longevity. Initial analysis of the physical

understanding of the predictors, through simple corre-

lation analysis, reveals the fact that predictors are re-

lated to some common climate indices, but are likely

reflective of combinations of atmospheric patterns not

well captured by a single index value. The longevity of

the predictors will only be known as the length of the

record increases. Overall, the deterministic and ensem-

ble methods provide simple high quality forecasts, pro-

duced in advance of the beginning of the NWAUS TC

season by one or more months, allowing end users an

ample amount of time to utilize the forecasts to their

fullest extent.
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