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Ecological Traits Fail to Consistently Predict Moth Species
Persistance in Managed Forest Stands

Keith S. Summerville'

Abstract

Species traits have been used as predictors of species extinction and
colonization probabilities in fragmented landscapes. Thus far, trait-based
analytical frameworks have been less commonly employed as predictive tools
for species persistence following a disturbance. I tested whether life history
traits, dietary traits, and functional traits were correlated with moth species
persistence probabilities in forest stands subjected to varying levels of timber
harvest. Three harvest treatments were used: control stands (unharvested since
1960), shelterwood cut stands (15% canopy removed), and patch cut stands (80%
standing bole removed). Logistic regression models were built to assess whether
species persistence probabilities were a function of species traits; separate
models were constructed for each level of timber harvest treatment. Species
persistence probabilities were mainly a function of pre-harvest abundances.
Species traits had idiosyncratic effects on species persistence depending on the
level of timber harvest employed. These results suggest that species traits may
indirectly influence how moth species assemblages change as a result of forest
management by determining pre-harvest abundance rather than persistence per
se. The absence of significant trait effects on persistence probabilities may also
reflect prior reduction in species trait space. That is, the range of species trait
combinations sampled in this study was much lower than observed in histori-
cally unlogged eastern deciduous forest systems. Thus, the lack of significant
trait-persistence correlations observed here might indicate historic extinctions
of species from prior logging events that have not been offset by post-harvest
recovery of original species assemblages.

Forest fragmentation is known to cause significant changes in lepidopteran
community structure and diversity (Summerville and Crist 2004, Fox 2013,
Slade et al. 2013). In general, loss of species richness and shifts in species com-
position are a function of the magnitude of disturbance to the forest landscape
(Forkner et al. 2006). Recovery of species richness can be rapid, especially for
forest stands with a limited disturbance footprint (Summerville 2013). Recovery
of pre-disturbance species composition appears to require longer time-courses,
and there is some question about how we develop baseline community targets
with which we can assess species recovery (Usher and Keiller 1998, Merckx et
al. 2009). How the recovery of species within ecological communities correlates
to reestablishment or recovery of functional processes within forests is also a
major unknown.

Explicitly linking shifts in species diversity and composition to persistent
shifts in ecosystem function has been challenging (Boerschig et al. 2013). Ecolo-
gists, however, are increasingly recognizing that the effects of fragmentation
need to be understood as a disturbance that may impair ecosystem function
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beyond merely reducing species diversity per se (Luck et al. 2012). Finding
clear correlations between changes in lepidopteran diversity and forest ecosys-
tem properties has revealed equivocal conclusions. For example, variation in
herbivory by larval Lepidoptera is connected to litter quality in forest systems,
but how specific species contribute to this phenomenon is less resolved (Chap-
man et al. 2003). A species’ contribution to ecosystem function is determined, in
part, by the evolved traits of that species (Pla et al. 2012). Thus, understandlng
whether variation in traits among species predicts response to forest disturbance
is an important first step to linking how changes in species diversity correlate
to alternation of ecosystem function (Ockinger et al. 2010).

Traits may influence how likely a species persists in the face of distur-
bance in a variety of ways. First, life history traits such as fecundity, body size,
voltinism, and overwintering stage are connected to variation in population size
in both space and time (Spitzer and Leps 1988, Betzholtz and Franzén 2011,
Boerschig et al. 2013). Body size in particular has proven a useful predictor of
both fecundity and dispersal capacity (Spitzer et al. 1984, Sekar 2012). Analysis
of dietary traits, such as host plant breadth, feeding mode (e.g., borer, chewer,
miner), and host plant type suggests that greater levels of specialization render
lepidopterans more vulnerable to disturbance (Summerville and Crist 2002,
Koh et al. 2004, Mattila et al. 2006, Slade et al. 2013). Less well studied are
functional traits, which explicitly identify the contribution of species to processes
such as pollination, decomposition, nutrient cycling, or carbon sequestration
(Schowalter 2000, Chapman et al. 2003). Pollinators and decomposers might be
considered more vulnerable to forest disturbance given their seeming inability to
move through heterogeneous land cover types and sensitivity to soil temperature
and moisture, respectively (see Hohn and Wagner 2000, Bommarco et al. 2010).

The goal of this study was to determine whether specific traits or trait
combinations of forest moths were related to species persistence probabilities
in stands experimentally managed with differing levels of timber harvest. I
obtained three types of trait data for each moth species sampled: life history
traits, ecological traits, and functional traits. I hypothesized that species would
be more likely to persist in managed forest stands if they were multivoltine,
generalist herbivores that used a combination of herbaceous and woody larvae
hosts. Furthermore, I predicted that pollinators and detritivores would be
especially sensitive to harvest disturbance, and species performing these func-
tions would be unable to persist in managed stands. Finally, I tested whether
post-disturbance species’ persistence probabilities were affected by pre-harvest
abundance in conjunction with species traits.

Methods

Study System. This research was performed within Morgan-Monroe State
Forest; a = 9,725 ha managed system in south central Indiana. Morgan-Monroe
State Forest occurs within the North-Central Interior Dry-Mesic Oak Forest and
Woodland ecological system (39°31'28"N, 86°44'13"W). In unfragmented land-
scapes, canopy cover tends to be dense, although historic fire regimes maintained
open canopy (Homoya et al. 1985). Quercus montana Wilde. (chestnut oak) is a
dominant species with @. alba L. (white oak), @. rubra L. (red oak), or Q. velutina
L. (black oak) present depending on soil moisture regimes. Carya cordiformis
Koch (bitternut hickory) and C. ovata (Mill.) Koch (shagbark hickory) are also
common. Additionally, this ecoregion is among North America’s richest for her-
baceous plants and shrubs with over 2,000 species described (Homoya et al. 1985).

Experimental Design. This study is part of a long term research
project designed to test for critical thresholds in levels of timber removal and
biodiversity changes within eastern deciduous forests (Hardwood Ecosystems
Experiment, HEE; see http://www.heeforeststudy.org/). In early 2007, I iden-
tified three large forested landscapes within Morgan-Monroe State Forest for
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lepidopteran sampling (see Summerville 2011). These landscapes possessed
a similar history of timber harvest, most were clearcut = 60 y in the past, but
the historical data regarding levels of timber removal were unavailable (D.
Vadas, personal communication). A subset of forest stands in each of these
landscapes was manipulated with timber harvest in 2008. One of two harvest
methods were used to manipulate forest stands in 2008: patch-cut harvests, in
which 80% of the standing forest canopy was removed in a 3—5 ha patch, and
shelterwood logging, in which the first of three planned cuts removed 15% of
the standing canopy. Furthermore, control treatments, in which 100% of the
standing biomass was retained within the entire forest stand, were designated.
To determine whether species persistence in managed stands was influenced
by combinations of species traits, I established moth sampling points in patch-
harvested stands, shelterwood cut stands, and controls. In total, I identified 4
stands that were patch-cuts, 4 stands that were unlogged controls, and 3 stands
forest stands that were managed with shelterwood techniques. All forest stands
were 3—5.8 ha in area.

Sampling Methodology. Lepidoptera were sampled from all 11 forest
stands in 2007, one year prior to timber harvest. Then, in 2008, private timber
concessionaires were contracted to remove trees from management concessions
with specific harvest allocations corresponding to the experimental design.
All stands were re-sampled in 2009. Moths were collected from forest stands
using Universal blacklight traps (12-watt, BioQuip Products, Inc., Rancho
Dominguez, CA) powered by 12 V, 26 Amp-hr batteries. Traps were located
in the approximate center of each forest stand to reduce edge effects from the
surrounding forest. On nights of operation, a single trap was placed at each
site on a platform 2 m above the ground and remained lit from 2000-700 CDT.
I sampled Lepidoptera every 9—-14 days from 30 May—30 August in both 2007
and 2009, producing 55 total samples from the 11 sites (5 per site) per sampling
year (110 samples across both years). Weather and moon intensity are known
to affect sampling efficiency of blacklight traps, so trapping was restricted only
to nights that had a minimum temperature > 16°C, no precipitation, and low
levels of ambient moonlight (% to new moon phases) (Summerville et al. 2006).
Species nomenclature and authorities follow Hodges et al. (1983), with revi-
sions following Ferguson (2008) and Lafontaine and Schmidt (2010). Voucher
specimens were deposited at in the insect collection at Drake University.

Trait Classification. Measurement of species traits followed the same
general protocol as Summerville et al. (2006) with several important exceptions.
First, I expanded the range of traits modeled based on the results of Koh et al.
(2004) and Mattila et al. (2006). This involved determining two critical aspects
of species natural history: the overwintering stage and species function in the
ecosystem (e.g., pollinator, detritivore). Such data are readily obtained for a
large number of Erebidae, Noctuidae, Geometridae, Notodontidae, Saturniidae,
and Sphingidae but were lacking for other less well-known microlepidoptera
taxa (see Covell 2002, Tuttle 2007, Ferguson 2008, Wagner et al. 2011). Thus,
I was only able to obtain complete natural history data for 278 out of the 389
total species sampled. These were the only species retained in the trait-based
analysis. In total, the following traits were assigned to species: voltinism, over-
wintering stage, diet breadth, host plant type, use of Quercus as a larval host,
use of Acer as a larval host, role as a pollinator (after species descriptions in
Wagner et al. 2011 and LeCroy et al. 2013), role as a detritivore, and body size
(see Table 1 for a more complete breakdown for how these species traits were
coded for each species). It is important to note that my assessment of species’
role in pollination services is conservative; additional species of Noctuidae and
Erebidae may provide pollination services without being formally documented
as doing so in the primary literature.

Data Analyses. I used logistic regression models to determine if particu-
lar species traits were significant predictors of species persistence probabilities
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Table 1. Species traits used as predictors of persistence probabilities in forests man-
aged with different harvest regimes. Species traits fall into one of three categories:
dietary traits, functional traits, and life history traits. Trait categories follow Summer-
ville (2006) and Pla et al. (2012).

Species Trait Trait category Trait measurement

Diet Breadth Dietary Two levels: generalist or specialist
following Summerville (2006)

Host plant type Dietary Four levels: woody plant feeder,
herbaceous feeder, fungivore /
lichinivore, and generalist after
Summerville and Crist (2002)

Use of Quercus spp. Dietary Two levels (0 = no; 1 = yes)

Use of Acer spp. Dietary Two levels (0 = no; 1 = yes)

Role in pollination Functional Two levels (0 = no; 1 = yes)

Role in detritivory Functional Two levels (0 = no; 1 = yes)

Voltinism Life history Number of adult generations per year

(1-4)

Overwintering stage  Life history Four levels (egg, larvae, pupae, adult)
Body size Life history Mean wingspan after Gaston and

Reavey (1989)

within patch-cut, shelterwood, and control stands. To perform these analyses, I
first screened the trait variables for significant intercorrelations using Pearson
product-moment correlation coefficients (PROC CORR, SAS Institute, Cary, IN).
Most trait variables were orthogonal (Pearson r < 0.30); however, host plant
type was highly intercorrelated with a number of factors. It was subsequently
excluded from analyses. In addition, overwintering stage was strongly intercor-
related with voltinism (multivoltine species tend to winter as larvae). Thus, I
also removed overwintering stage from logistic regression models.

I used the SAS Enterprise system to create separate logistic regression
models for each of the three harvest treatments. Species were considered to have
‘persisted’ if they had a post-harvest abundance > 5 (across all replicate stands
within a harvest treatment) and occurred in at least one stand per treatment
in both 2007 and 2009. These cut offs were chosen to be consistent with other
recent studies that have examined persistence probabilities in lepidopteran com-
munities (see Koh et al. 2004). To some extent, the specific values are arbitrary,
but species with post-harvest abundance > 5 have detection probabilities > 0.80.
Higher detection probabilities suggest that species absences from ecological
communities reflect the impact of timber harvest rather than sample bias (Sum-
merville et al. 2006). Models that retained singleton and doubleton species
(i.e., those that possessed only one or two sampled individuals) produced quali-
tatively identical results as models built using this more conservative definition
of persistence. Model significance was assessed using likelihood ratios, which
tested the global null hypotheses that included trait variables have no effect on
persistence probabilities (Piegorsch and Bailer 1997). In addition, I followed
the recommendations of Nagelkerke (1991) and calculated the generalized R?
parameter to further describe the fit of the model to the data. Voltinism and
body size values were log-transformed prior to analyses to meet the assumptions
of logistic regression. Quercus use, Acer use, pollinator status, and detritivore
status were square root transformed prior to analyses (Sokal and Rohlf 1995).

https://scholar.valpo.edu/tgle/vol48/iss3/3
DOI: 10.22543/0090-0222.1016



Summerville: Ecological Traits Fail to Consistently Predict Moth Species Persi

118 THE GREAT LAKES ENTOMOLOGIST Vol. 48, Nos. 3 - 4

In addition to trait variables, I also included each species’ abundance in 2007
as a random covariate. That is, I tested whether species persistence probabili-
ties were related to pre-harvest population size (as sampled using light traps)
rather than species traits per se. Because I lacked a well resolved phylogeny
to test for relationships among the species traits and moth taxa (families, sub-
families) (see Felsenstein 1985), I followed the method of Koh et al. (2004) and
created a second logistic regression model with a dummy variable used to code
for lepidopteran families. The effect of moth family on persistence probability
was non-significant in this model (Wald x? = 1.34; df=1; P = 0.19) despite there
being a significant correlation between moth family and body size (Pearson cor-
relation = 0.54; P < 0.01), voltinism (Pearson correlation = 0.28; P < 0.05), and
role in detritivory (Pearson correlation = 0.75; P < 0.001). The significance of
all model effects was assessed using Wald x? statistics.

Results

Trait data were available for 278 of the moth species sampled from Morgan-
Monroe State Forest in 2007. Of this total, 64 species persisted in the stands
managed with patch cut harvests, 66 species persisted in the stands managed
with a shelterwood cut, and 83 species persisted in the stands treated as con-
trols. To place these data in context, in 2007 the richness of moth species in
stands allocated for patch harvests was 177 and the richness of moths sampled
in stands to be managed with shelterwood cuts was 159. The pre-harvest rich-
ness of moths in control stands was 150. Thus, richness was lower across all
three treatments in 2009 compared to 2007. The decrease in species richness,
however, was greater in managed stands. Finally, the five most abundant
species that were sampled in 2007 were the same five most abundant species
in 2009: Halysidota tessellaris (Smith) (Erebidae), Hypoprepia fucosa Hubner
(Erebidae), Nadata gibbosa (Smith) (Notodontidae), Lambdina fervidaria Hiib-
ner (Geometridae), and Heterocampa obliqua Packard (Notodontidae).

Persistence probability for moth species in control stands was a function
of Quercus use by larvae and pre-harvest abundance (x? = 38.47; df = 7; P <
0.0001). The model R? was calculated to be 0.30, indicating about one-third of the
variance in species persistence was described by the model effects. Functional
traits and life history traits, however, were not significant predictors of species
persistence (Table 2). Species that persisted in control stands post-harvest in
Morgan-Monroe State Forest were those that did not rely on Quercus as a host
plant (x?=3.73; df = 1; P<0.05) and those that were sampled at high abundance
in 2007 (x? = 18.30; df = 1; P < 0.0001).

In contrast to the persistence model for the control stands, the likelihood
that a moth species sampled in 2007 persisted in shelterwood harvested stands
in 2009 was a function of one functional trait and initial abundance (Table 3).
The overall model was significant (x?=37.57; df =7; P<0.0001), but the R? value
was slightly lower than the model for the control stands (R?=0.28). Persistence
probabilities were lower for species that were considered detritivores (x° = 3.99;
df = 1; P = 0.045) and those species that were sampled at low abundances in
2007 (x?=22.87; df =1; P=0.006). Diet breadth, host plant type, voltinism, and
body size were not significant predictors of persistence probabilities (Table 3).

Species traits were not significant predictors of persistence probabilities
for moths sampled within patch cuts harvest stands (Table 4). The full model
was significant (x? = 53.73; df =7; P < 0.0001) but persistence appeared solely
to be a function of initial sampling abundance (x? = 33.92; df = 1; P = 0.0001).
The Nagelkerke R? value for this model was the highest of the three (R?=0.38).
Species that were abundant in 2007 tended to persist in stands managed with
the patch cut harvest treatment. Quercus feeding might be considered a minor
contributor to species persistence with a low but non-significant test statistic
(Table 4). Species known to feed on Quercus leaves were less likely to persist
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Table 2. Results of logistic regression model relating moth species traits to persistence
probabilities in control forest stands. Replicate forest stands (n = 4) were sampled pre-
harvest in 2007 and post-harvest in 2009. The full model was significant (x> = 38.47; df = 7;

P <0.0001).
Model parameter df Estimate Wald x? P
Use of Quercus species 1 -0.79 3.72 0.05
Diet breadth 1 0.56 0.05 0.82
Role in pollination 1 0.61 0.46 0.50
Role in detritivory 1 -14.87 0.01 0.97
Voltinism 1 0.06 0.04 0.83
Body size 1 2.65 0.89 0.67
Log initial (2007) abundance 1 -1.60 18.30 0.0001
Intercept 1 1.25 3.28 0.001

Table 3. Results of logistic regression model relating moth species traits to persistence
probabilities in forest stands managed with a shelterwood cut. Stands (n = 3) were
sampled pre-harvest in 2007 and post-harvest in 2009. The full model was significant
(x?=37.57;df =7, P < 0.0001).

Model parameter df Estimate Wald x? P
Use of Quercus species 1 -0.23 0.34 0.56
Diet breadth 1 0.42 0.68 0.41
Role in pollination 1 0.56 0.71 0.40
Role in detritivory 1 -1.45 3.99 0.04
Voltinism 1 -0.15 0.34 0.56
Body size 1 3.29 1.89 0.23
Log initial (2007) abundance 1 -1.55 22.87 0.0001
Intercept 1 1.71 7.49 0.006
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Table 4. Results of logistic regression model relating moth species traits to persistence
probabilities in forest stands managed with a patch harvest. Stands (n = 4) were
sampled pre-harvest in 2007 and post-harvest in 2009. The full model was significant
(Xx?=53.73; df = 7; P < 0.0001).

Model parameter df Estimate Wald x? P
Use of Quercus species 1 -0.63 2.38 0.10
Diet breadth 1 0.16 0.08 0.78
Role in pollination 1 -0.63 0.92 0.34
Role in detritivory 1 -0.96 1.59 0.21
Voltinism 1 0.03 0.01 0.92
Log body size 1 0.89 1.12 0.29
Log initial (2007) abundance 1 -2.09 33.93 0.0001
Intercept 1 2.47 13.84 0.0002

in the patch cut stands post-harvest compared to those moths known to feed
on other host species (x* = 2.38; df = 1; P = 0.10). However, the power of this
test is fairly low due to the limited replication of stands within management
category (8 = 0.60).

Discussion

The response of lepidopteran species to contrasting levels of timber harvest
was only weakly predicted by species traits, and no single trait was consistently
related to species persistence following logging. Previous studies in this sys-
tem, however, have demonstrated that removal of standing timber biomass is
correlated with significant loss of species richness (Forkner et al. 2006; Sum-
merville 2011, 2013). The equivocal nature of species trait-species persistence
relationships complicates efforts to link changes in lepidopteran assemblages
to alteration of forest ecosystem function. Low levels of replication within har-
vest treatments and across the forested landscape of the Hardwood Ecosystem
Experiment certainly contributed to lack of significant model effects (i.e., the
power of some of my tests was = 0.60). Accommodating lower statistical power
by allowing significance to be assigned at a higher P-value (e.g., 0.10), however,
only adds one significant species trait in the patch cut treatment (Quercus use,
see Table 4). Variability between years due to environmental stochasticity may
also dilute the effects of management treatment on lepidopteran persistence
(Leps et al. 1998), but I did not detect a clear pattern of significance in sampling
year X species trait interactions.

Within the context of background annual variation and lower that optimal
statistical power, forests managed with timber harvest possess fewer species,
but loss of species within lepidopteran communities does not confined to a single
feeding guild, life history strategy, or functional group (e.g., pollinators). Instead,
the single best predictor of a species’ persistence probability post-harvest was its
initial abundance. The abundance of moths in these forest stands is related to
voltinism, body size, and feeding guild (Summerville et al. 2013). Multivoltine
species with smaller body sizes and larvae that develop on a wide range of woody
plant foliage were more abundant pre-harvest and thus more likely to persist
following logging (see also Summerville and Crist 2002). In addition, inclusion
of initial abundance as a co-variate accounts for potential ‘noise’ associated with
species’ detection probabilities. Some subset of those species that ‘persist’ are
likely ‘persistent’ because they are readily sampled using light traps.
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Studies of lepidopteran communities in grasslands suggest that functional
homogenization results from landscape disturbance as species persisting in
communities become more generalist (Leps et al. 1998, Boerschig et al. 2013).
Furthermore, extinction probabilities of forest butterflies and moths in frag-
mented forests are significantly predicted by species traits (e.g., Koh et al. 2004,
Mattila et al. 2006, Beck et al. 2006, Slade et al. 2013). Species more likely to
experience an extinction event post-fragmentation were specialists (as larvae),
small-bodied, and univoltine. Species persisting in highly managed landscapes
tended to be ‘generalists’ (e.g., see Summerville et al. 2006). One major differ-
ence between these studies and the results presented here is the spatial scale
at which species persistence was assessed.

Spatial scale clearly influences how the effects of logging are measured
(Hamer and Hill 2000). In this study, relatively small forest stands (3—5 ha) were
disturbed and most of the intervening landscape was maintained as unmanaged
forest > 60 years old. Studies that tend to document significant correlations
between species traits and persistence probabilities occur at the other end of
the landscape disturbance gradient (Slade et al. 2013). In these studies, forest
stands that were sampled represented isolated patches in a more highly managed
landscape (Koh et al. 2004). The matrix was more inhospitable and less likely
to facilitate re-accumulation of species (Ricketts et al. 2001). Thus, persistence
probabilities of moth species may be a function of the species composition of
the undisturbed matrix when the disturbance footprint is small relative to the
extent of the unmanaged forest. Indeed, species that were the most abundant
in forest stands pre-harvest (and thus more likely to persist) were also more
abundant in unmanaged forest matrix pre-harvest (Summerville et al. 2013).
When the disturbance footprint of logging is larger, effectively fragmenting
the landscape, species traits may become better predictors of which moths will
contribute to the recovering forest community.

The lack of significant trait correlations observed in this study may also
reflect the legacy of past timber harvest. There are few historic data that would
allow a comparison of trait distributions for forest moth communities prior to
the timber harvest that occurred in 1930s and 1940s and the trait distributions
measured in this study. In contrast to old-growth and historically unlogged
forests in states such as Ohio (USA), however, the moth communities sampled
here contain a higher proportion of generalist feeders and many fewer Quercus
specialists (Summerville et al. 2008). Perhaps when generalists dominate a
community, only their pre-disturbance abundances will be consistent predictors
of which species survive. How ecologists define the reference point by which
we evaluate species persistence or changes in ecosystem function is therefore
critical (e.g., Murphy and Romanuk 2014). Managing for recovery of the 2007
moth communities in Morgan-Monroe State Forest will miss important aspects
of lepidopteran biodiversity that is present in stands lacking historic logging
activities. Our current forest moth assemblages may be highly altered artefacts
of historic lepidopteran communities, even if logging has not occurred for long
time periods. Establishing a framework to understand how both historic and
current forest management affects functional diversity of insects will be critical
to understanding how to conserve eastern deciduous forests as they are addition-
ally impacted by future climate and invasive species stressors.
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