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Abstract

In game theory, buyer-seller games rarely utilize a negotiating third

party. Any negotiations are typically conducted by the buyer and

seller. This study, motivated by the real estate market, uses sequen-

tially and simultaneously played game models to explore the influence

a self-interested, negotiating, third party has on player payoffs. For

the sequential model, a game tree is utilized to demonstrate player

actions, preferences, and outcomes. The weak sequential equilibrium

is calculated using Gambit[1] and shows optimality in player payoffs

to exist when the seller’s and realtor’s strategies align according to the

current market. For the simultaneous model, expected payoff func-

tions for each of the three players are constructed. PlatEMO[2], a

MATLAB extension, is used to simultaneously maximize the players’

functions using multi-objective optimization evolutionary algorithms.

The Pareto-optimal front is found, consisting of all non-dominated

solutions in the objective space. Similar to the sequential model, op-

timal outcomes exist when seller and realtor strategies align. Findings

from both models suggest a self-interested negotiating third party is

largely unnecessary and only has negative impact on player payoffs.
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Chapter 1

Introduction

1.1 “What’s in a Game?”

Game theory is the study of mathematical models of strategic interaction among

rational decision-makers [7]. It has also been described as the mathematics of

conflicts of interest when trying to make optimal choices [8]. Essentially, it pro-

vides a way to mathematically model optimal outcomes based on the players’

preferences. These outcomes are dependent on the mutual actions of the players.

Applications include scenarios as simple as a group of friends trying to deter-

mine which movie to go see, to extremes such as two countries entering a trade

negotiation. In these scenarios, each player has a vested interest in the outcome

that is very likely conflicting with another player’s interest. Arriving at an out-

come that is optimal, given the players’ conflicting interests, requires the use of

a game theoretic model. Gillman and Housman [9] formally define a game to

consist of the following:

Definition 1 A game consists of the following

1) A set N = {1, 2, ..., n} of at least 2 players

1



1.1 “What’s in a Game?”

2) A set O of possible outcomes that can occur when the game is played

3) Rules that state how the game is to be played

4) Defined preferences among the players involved in the game.

To build a game theoretic model, these four items must be identifiable. For

example, two friends, John and Mike, may be trying to decide what movie to go

see. There are three movies playing at their local theater: Movie A, Movie B,

and Movie C. John would rather see Movie A which is a sequel to his favorite

franchise and refuses to see Movie C due to his hatred of horror films. Mike, on

the other hand, would rather see Movie C since he has already seen the other two

movies playing, and Movie A is too long, given the amount of free time he has.

They definitely don’t want to see any of the movies playing by themselves, so

they must decide amongst themselves which movie they are going see together.

In this simple scenario we can identify the following:

1) Who are the players? In this scenario, the set of players is the 2 friends,

John and Mike.

2) What are the possible outcomes? The set of possible outcomes is the

set of all possible movies {Movie A, Movie B, Movie C} that are playing at

the theater.

3) What are the rules that govern the players’ actions? The players

must work cooperatively in order to determine which movie they are going

to see together. Seeing separate movies by themselves is not an option.

4) What preferences do the players have among the outcomes? John

prefers Movie A > Movie B > Movie C, due to Movie A being a sequel to

his favorite franchise and his hatred of horror films. Mike prefers Movie C

2



1.2 Buyer-Seller Games

> Movie B > Movie A, due to having already seen Movie A and Movie B

and his limited available free time.

The above scenario models a cooperative game1 among two players with com-

plete information2. Cooperative games allow for players to openly communicate

strategies and preferences among the outcomes with each other. This awareness

of the the opposing player’s strategies and preferences grants each player com-

plete information of the type of game being played. More generally, a variety of

games can be constructed depending on factors such as how many players exist,

whether or not there is cooperative play, if the game consists of complete versus

incomplete information, if the game is being played singularly or iteratively, etc.

One of the most common types of games is a mixed-strategy game, in which a

player assigns a probability distribution to their available actions based on their

belief of the other player’s (or players’) actions. Optimality exists in a mixture

of strategy choices, based on a defined probability, for at least one of the players.

This is a common type of outcome in game theory since pure strategy solutions

are rarely seen in real-world interactions.

1.2 Buyer-Seller Games

A mixed-strategy game could also be used to describe buyer-seller interactions.

Buyer-seller games abound, using various architectures and applications [9, 10,

11, 12]. These games present an interaction usually between two players, one

being the seller and the other the buyer. Typically, one player (the seller) has an

item which they are willing to sell at a value greater than or equal to its loss. The

1Cooperative games require players to arrive at a binding agreement regarding their actions
[9].

2A player has complete information if they are aware of the rules of the game, the possible
outcomes, and all preferences held by every player [9].

3



1.2 Buyer-Seller Games

other player (the buyer) has a desire to purchase said item, but only at a price

which they are profiting, either monetarily or otherwise. Other factors, outside of

monetary gain, could influence player preferences as well. A scenario might exist

where a seller has multiple buyers looking to purchase the same item. In this

case, one buyer may be willing to pay more than his valuation of the item out

of fear that the seller will get a better offer from another player. Alternatively,

time may be a concern of the seller in that they are willing to take a reduced

offer to meet a specific deadline. Depending on the nature of the scenario, all

information is not always communicated between buyer and seller, indicating a

lack of complete or perfect information1 in the game.

Bergemann and Heumann [10] pose an example of such a game involving a

seller who is privately informed of the value (v) of an item they are looking to

sell. A buyer believes the true value of this item lies somewhere on a uniformly

distributed interval [x, y] where 0 < x < y. Additionally, the item in question

is worth 3
2
v to the buyer. If the buyer proposes a price (p), the seller will either

accept if p ≥ v or reject if p < v. If the seller accepts, they will get a payoff of

p − v, and the buyer will get a payoff of 3
2
v − p. If the seller rejects the buyer’s

offer, the seller will get a payoff of v, since they are retaining the value of the

item, and the buyer will get a payoff of 0. By applying a game theoretic model,

an optimal offer for the buyer can be found in order to provide them with the

best possible payoff, with regards to the seller’s preferences [10].

As shown in the work by Bergemann and Heumann [10], interactions between

the seller and buyer may either occur simultaneously or sequentially depending

the on the scenario being studied. However, to illustrate the element of negoti-

ation, buyer-seller games are more often played sequentially. This is especially

apparent when applying buyer-seller games to the real estate market. Typically,

1Players choose their actions sequentially and know all actions taken previously [9].

4



1.3 The Real Estate Market

buyers and sellers negotiate using a series of offers and counter-offers, respond-

ing sequentially to the previous player’s action, until a mutually agreed upon

resolution is achieved.

In cases of a buyer-seller interaction with missing information, the buyer

and/or seller may be unaware of the other’s true valuation or strategy. This

lack of information between parties forces players to make decisions based off

of how they believe their opponent(s) to have acted prior to their information

set1; however, a negotiator could be added to the game to whom information is

made freely available from both parties. This negotiator would also have a vested

interest in the outcome, as they would be looking to maximize a commission or

profit over time. In the real world, buyer-seller interactions are often mediated

by a third party with a vested interest. Such is the case with consignment shops,

online purchasing (i.e. eBay, Etsy, Amazon, etc.), and the real estate market.

1.3 The Real Estate Market

In the real estate market, sellers and buyers rarely interact directly with each

other. Instead, real estate agents are typically employed by both parties. While

the sale of a home can occur without the use of a negotiating party, a realtor usu-

ally acts on the behalf of the seller or buyer, mediating any buyer-seller interac-

tion. Often the seller and buyer will have their own agents acting on their behalf,

but it is possible for a realtor to act as a dual agent between both parties. In this

case they would receive a double commission. This agent is tasked with pricing

the home for sale, marketing the home, negotiating the sale with the buyer or

buyer’s agent, and facilitating the sale through closing. These services are all cov-

ered in the realtor’s commission. Additionally, these agents promise a likelihood

1An information set is a set that, for a particular player, establishes all the possible moves
that could have taken place in the game so far, given what that player has observed [13]

5



1.3 The Real Estate Market

in increased sales price with the employment of their services. While it can be

assumed that the realtor would have the client’s best interest at heart, the reality

is that the realtor views their client as a means off of which they can capital-

ize. This consideration of a third-party interest moves the two-player buyer-seller

game to a three-player buyer-seller-negotiator game containing both imperfect

and incomplete information, in which all three players act in self-interest.

Scenarios involving incomplete and imperfect information frequently occur.

For instance, a seller who is motivated might not want this communicated to a

potential buyer in effort to maximize their payoff. Additionally, a buyer may be

unaware of other offers received or if there is a reserve price when determining

how to bid for a property. Both of these scenarios would require an assignment of

a probability distribution either across previous actions taken by the other player

or across all possible game models.

Cao discusses the realtor as a third-party interest [14]. While a realtor may

be hired to protect the seller’s interest, they add another dimension to the game

as they enter with their own interest of personal gain. Cao identifies two self-

promoting strategies for the realtor. In the first, the realtor seeks to extend

market time exposure of the property in order to get the best possible offer, max-

imizing their commission. The realtor might communicate interest in maximizing

the seller’s profit, but this is likely to be only to the degree in which it directly

affects their commission. In the second strategy, Cao states that the realtor seeks

a quick turnover, even at the risk of a lower commission. This implies they may

undercut the seller’s potential profit in order to maximize their own profits over

time, allowing them to focus on other available listings and potential commis-

sions. This calls to attention to the fact that seller and realtor priorities may not

always align [14].

A typical commission rate for an agent acting on behalf of both parties is

6



1.4 Context and Overview

between 5% and 6%, depending on the type of home to be listed and the type

of existing market [15]. However, this range may fluctuate between states and

agencies. This rate may also be negotiated between the agent and the client. If

the seller and buyer have separate agents, this commission is split evenly between

the two negotiating parties. Upon closing, the seller is usually responsible to pay

the full commission cost [15].

When considering player strategies in negotiation, Cao suggests the seller

maintains the upper hand by communicating a rejection threshold to the buyer

[14]. By announcing a rejection threshold, this informs and places an expectation

on the buyer, essentially eliminating consideration of offers below a particular

price point. Cao goes on to state that it is in the buyer’s best interest not to

inquire concerning rejected offers but rather to act according to their own optimal

strategy[14]. This is considering a game only between the two parties, where all

negotiations are handled without the implementation of a third party. However,

the same could be easily surmised when considering interactions between the

buyer and seller’s agent.

1.4 Context and Overview

When analyzing buyer-seller interactions using game theory, a negotiating third-

party interest is rarely considered. Any negotiations are typically conducted by

the buyer and seller themselves. This study looks at the contributions a vested

third-party negotiator brings to a buyer-seller game and how they influence player

payoffs. Optimal strategies for the all players will be identified to determine at

what point equilibria can be is achieved.

Although it is typical for the buyer and seller to have separate realtors working

on their behalf, the seller’s realtor is considered the only negotiating party for the

7



1.4 Context and Overview

purpose of this study. This negotiating third party is assumed to have perfect

and complete information from both parties while remaining self-interested. This

introduces a different approach to typical buyer-seller games, in which the two

parties may be unaware of the other’s motivations.

Buyer-seller models introduced in this paper explicitly focus on player interac-

tions in the real estate market. Two models, an “extensive game” and a “Bayesian

game”, involving a third-party negotiating interest in a buyer-seller game are ex-

amined in which both incomplete and imperfect information are present. Incom-

plete information exists in the “extensive game” model, and imperfect information

exists in the “Bayesian game” model.

1.4.1 Extensive Game Theoretic Model

The “extensive game” model implements a 50/50 chance between a buyer’s and

seller’s market. This model deals with a single buyer, seller, and realtor and

focuses on outcomes involving alignment and misalignment between the seller’s

and realtor’s strategies and the impact this has on the players’ payoffs. As buyer-

seller interactions tend to be sequential, this model allows for visual representation

of the sequential play and accounts for player belief systems1 based on previous

strategies. A game tree is constructed, showing all player behavior strategies2,

belief systems, and outcomes. All weak sequential equilibria, solutions that are

sequentially rational3 and demonstrate consistency of beliefs4 among the players,

are identified.

1A belief systems is a function that assigns a probability distribution over histories in each
information set not assigned to chance [9].

2A behavior strategy is a function which assigns to each of the player’s information sets a
probability distribution over possible actions [9]

3A sequentially rational solution requires all player strategies to be a best response at each
information set to which either the player or chance is assigned [9]

4Consistency of beliefs is held when a player’s belief system matches that of the previously
acting player’s strategy profile [9].

8



1.4 Context and Overview

1.4.2 Bayesian Model

The “Bayesian game” model deals with a single buyer, seller, and realtor but

considers the existence of different types of the negotiating party. Two types of

realtor interest are considered: a realtor who desires to maximize their commission

and a realtor looking for a quick sale, as these are the two dominating interests of

a negotiating third party in the real estate market. Variables such as the agreed

upon list price between the seller and negotiator, commission rate selection by the

negotiator, and the buyer’s offer price are analyzed to determine where optimal

payoffs occur. Expected payoff functions for each player are constructed using

these variables. Parallel processing of the player’s expected payoffs using a non-

dominated1 sorting genetic algorithm is then utilized to find the Pareto-optimal

front2 of the simultaneously maximized player functions using PlatEMO [2] in

MATLAB [16]. The Pareto-optimal front is then identified to determine the set

of non-dominated solutions that exist for each of the players and how payoffs are

influenced by the realtor.

1A solution is called non-dominated if none of the objective functions can be improved in
value without degrading some of the other objective values.

2A Pareto-optimal front is a collection of all non-dominated points within the objective
space

9



Chapter 2

Model Architecture

2.1 Case I: Extensive Game

In sequential games, consideration must be given to the player’s knowledge of

previous actions at each non-terminal history1 as well as their knowledge of the

type of game they are playing (i.e. the rules, outcomes, and preferences). When

a player possesses knowledge of all previous actions, the player is said to have

perfect information, and when the player is aware of all rules outcomes, and player

preferences, the player is said to have complete information. Games in which

players take action sequentially with incomplete and/or imperfect information are

known as extensive games. Gillman and Housman [9] formally define extensive

games as consisting of the following:

Definition 2 An extensive game consists of the following

1) A set N = {1, 2, ..., n} of at least two players

1A non-terminal history marks a subsequence of play that is made along the way before
reaching the end of the game [9].

10



2.1 Case I: Extensive Game

2) A set O of terminal histories1

3) Information sets partitioning all non-terminal histories such that each

non-terminal history within an information set has the same set of pos-

sible actions following it.

4) A player or chance is assigned to each information set.

5) For each information set assigned to chance, there is a probability dis-

tribution that chance uses to select its action.

6) Starting with the empty history2, if a non-terminal history is reached,

the assigned player, or chance, selects an action to append to the current

history.

7) Utility functions ui : O −→ R that specify preferences among terminal

histories for each player i ∈ N

Sequential games, like the extensive model presented in this text, are typically

represented using a game tree3. The tree’s root node, also called the empty

history, indicates the starting point of the game. Edges branching from nodes

represent actions either assigned to players or chance. Nodes within the game are

non-terminal histories and represent player sequences within the game. Terminal

nodes are labeled with outcomes/payoffs for their particular sequence of actions

[9].

1A terminal history marks the ending sequence of a sequential game.
2An empty history marks the starting sequence of a sequential game.
3A game tree provides a visual representation of a sequential game and displays all ways

that a game could be played.

11



2.1 Case I: Extensive Game

Figure 2.1: Sequence of play for all players in the extensive model along
with their available actions at each turn (abbreviations correspond to

actions in Figure 2.2)

2.1.1 Building the Game Tree

We construct a three-player extensive model involving a single seller, buyer, and

realtor; all of whom are looking to maximize their payoff. Chance is implemented

as the root node with a 50/50 probability of either being a buyer’s market or

a seller’s market. A buyer’s market suggests an oversaturation of homes on the

market, allowing the buyer a greater likelihood of acceptance of a reduced offer.

A seller’s market suggests a dearth of homes on the market, allowing the seller

a greater likelihood of achieving an increased sales price. As with any modeling

process, several assumptions will be made in regards to the players and their

actions.

Assumption 1. The type of market is directly related to the seller’s mo-

tivation (i.e. A buyer’s market indicates the seller is motivated while a

seller’s market indicates the seller is indifferent).

Following declaration of the market, all players are aware of the current market

and can choose to act accordingly. The realtor takes action first, choosing either

to list the property high in effort to maximize their commission (H), extending

its market time, or list the property low (L), reducing its market time.

12



2.1 Case I: Extensive Game

Assumption 2. The realtor action (H) implies that the property is listed

at the high end of fair market1; alternatively, (L) implies the property is is

listed at the low end of fair market.

Assumption 3. The realtor action (H) implies an increase in time on the

market for a potentially larger purchase price, while (L) is a decrease in

time on the market for a potentially smaller purchase price.

The buyer’s action follows in which they must decide to make an offer for the

property at the asking price (A), submit a counter offer reasonable for the current

market (C), or refuse to even bid the property and walk away (W). If the buyer

chooses to submit a counter offer, the action sequence then goes to the realtor;

otherwise, the game ends.

Assumption 4. The buyer action (C) implies a reduced offer, typical for

the current market, is made.

At this point in the game, the buyer, although aware of the current market, has

imperfect information regarding the realtor’s previous action. They are unaware if

the realtor has listed the property at an inflated price to increase their commission

(H) or if the listing price has been reduced to facilitate a quick sale (L). Thus, a

belief system must be implemented, due to the information set consisting of two

possible node locations within the game.

The realtor’s second action sequence requires them to either encourage the

seller to accept the counter offer (E), indicating the counter offer still affords a

reasonable commission, or discourage acceptance of the offer (D), indicating the

contrary.

1For this study, fair market will be defined as the interval [x, y] on which market value
exists.
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2.1 Case I: Extensive Game

Assumption 5. In regards to the realtor action (H), the follow-up action

(E) indicates the realtor is still within their desired commission range, while

(D) indicates the realtor’s commission would significantly drop.

Assumption 6. In regards to the realtor action (L), the follow-up action

(E) indicates the realtor values time saved over a reduced commission, while

(D) indicates the time saved is not worth the reduced commission.

The seller takes actions last, and only if a counter offer is presented. In such a

scenario, the seller must either accept the reduced offer (A) or reject the offer

(R) on the basis of their motivation. Imperfect information exists at this player

sequence as well. For each market, two separate information sets exist for the

seller. While the seller is aware of the realtor’s second action (E) or (D), he is

unaware of the realtor’s initial action (H) or (L); therefore, both terminal histories

following (E) make up one information set and both terminal histories following

(D) make up the other. Similar to the buyer, the seller must implement a belief

system based on how he believes the realtor is acting in the game - looking to

maximize his commission or looking for a quick turnover.

Players are concerned with a variety of factors, depending on where their

action point is within the game. For instance, in a buyer’s market where there

is an oversaturation of houses on the market, the seller would place primary

importance on reducing market time and secondary importance on achieving

their valuation. Alternatively, in a seller’s market where demand exceeds supply,

the seller is likely to be indifferent about time, placing all importance solely on

their return value.

Assumption 7. A motivated seller places most importance on time and

secondary importance on purchase price; conversely, an indifferent seller

place most importance on purchase price and are unconcerned with time.
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Chance ( 1
2/ 1

2 )

P24

P32

(0,−5, 0)

W

P26

P13

(0,−7, 0)D

(−10, 0, 10)A
D

P14

(0,−10, 0)D

(−8, 3, 8)A

E

C

(−6, 5, 6)

AL

P32

(0, 0, 0)

W

P25

P13
(0, 0, 0)D

(6, 6, 0)A
D

P14
(0,−2, 0)D

(8, 8,−5)A

E

C

(10, 10,−10)

A

H

Seller’s Market

P21

P31

(−2,−2, 0)

W

P23

P11

(−5,−6, 0)D

(6, 6, 10)A
D

P12

(−5,−8, 0)D

(8, 8, 8)A

E

C

(10, 10, 6)

AL

P31

(−5,−5, 0)

W

P22

P11
(−10,−7, 0)D

(3, 0, 0)A
D

P12
(−10,−10, 0)D

(2, 3,−5)A

E

C

(5, 5,−10)

A

H

Buyer’s Market

P1 −→ Seller

P2 −→ Realtor

P3 −→ Buyer

Figure 2.2: Extensive model game tree showing sequence of play, player
actions (e.g. H, L, A,...), information sets (e.g. P11,..., P21,...,P31,...),

and payoffs (#,#,#).
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non-terminal history

terminal history

imperfect information set

decision path

weak sequential equilibrium path

Figure 2.3: Technical legend for Figure 2.2

A buyer is only ever concerned with receiving the best possible deal, regardless

of the type of market they are in.

Assumption 8. The buyer’s valuation is synonymous with market value.

Assumption 9. Market value is the midpoint on the fair market interval.

The realtor, however, must have a variety of considerations, depending on

where they are looking to make a decision. At information set P21, the realtor

must decide to either go for a higher (H) or lower (L) commission, corresponding

to an extended market time or a quick sale, respectively. Since this information

set is in a buyer’s market, to act in the seller’s best interest would mean that the

realtor would need to consider time to be of most importance, therefore choosing

(L). Choosing this option, the realtor’s payoff would have three considerations:

time saved, commission received, and the possibility of the client being retained

for future services. If action (H) was selected by the realtor at information set

P21, time would be of no concern and the payoff would only have two consider-

ations, the commission received as well as the possible loss of a future/current

client. At information set P24 the realtor’s decision exists in a seller’s market.

To choose (H) would place primary importance on obtaining a larger commission,

which is directly related to the sales price. Seeing how the seller is indifferent

about time and is only concerned with obtaining the largest return value as possi-

16



2.1 Case I: Extensive Game

ble, the realtor’s payoff takes into consideration the commission received as well as

the possibility of the client being retained for future services. However, to choose

(L), would again result in three considerations to the realtor’s payoff: time saved,

commission received, and the possible loss of a future/current client.

Payoffs in Figure 2.2 are calculated using previously stated considerations

as if players had perfect information as to how the game was played. Player

payoffs exist on the interval [−10, 10], where −10 indicates the worst possible

outcome for a player, 0 indicates the player gains/loses nothing in regards to the

considerations associated with that outcome, and 10 indicates the best possible

outcome for a player. All other payoff values are a sum of gains and loses in

regards to considerations they hold at that particular outcome.

For example, at the terminal history “Buyer’s Market, H, A”, a buyer’s market

is selected, the realtor chooses to list the property high for a larger commission,

and the buyer puts in an offer at the asking price. The assigned player payoffs

here are (5, 5,−10). Here the seller gets a reduced payoff of 5, due to market time

being extended, per the realtor’s actions, while they are motivated to sell. It is

important to remember that in a buyer’s market the seller values reduced market

time more than an increased sales price. Even with this being the case, they

attain a payoff greater than 0 since they are obtaining a sale price significantly

over market value, although still within fair market. The realtor also receives

a reduced payoff of 5, due to their loss of potentially retaining a future client

because of misalignment in strategy choice. However, a payoff greater than 0 is

assigned since they are obtaining a significantly larger commission. The buyer

receives the worst possible payoff, −10, since they are paying significantly over

market value in a market where the seller is motivated.
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2.1 Case I: Extensive Game

2.1.2 Calculating the Weak Sequential Equilibrium

To calculate the weak sequential equilibrium, the game tree form Figure 2.2 is

constructed in Gambit1 [1]. Once the game is initiated in the GUI, sequentially ra-

tional behavior identified and consistency of beliefs are implemented. The output

defines the weak sequential equilibrium for the game and calculates the players’

expected payoffs.

Each best response action for all players at every non-terminal history are

identified and the edge labeled with their appropriate action is highlighted. These

highlighted actions demonstrate sequential rational behavior for the player with

whom the action is associated. For instance, when looking at any one of the

seller’s non-terminal histories in the buyer’s market subgame2 (see Figure 2.2), it is

apparent that they will always get a better payoff by selecting (A) for acceptance

of the offer rather than selecting (D) to decline the offer. This makes sense since

in a buyer’s market it is assumed that the seller is motivated and willing to take

a loss in monetary gain for the sake of time. Therefore, we could say that, within

the buyer’s market subgame, the seller’s strategy to decline is dominated by their

strategy to accept.

A belief system is incorporated at information sets P31, P32, P11, P12, P13,

and P14. Each belief system is assigned based on how the deciding player believes

the previous player to have acted based on the information known. Consistency

of beliefs is demonstrated at each information set based on how the acting player

believes the other to have acted. For example, at information set P32, the buyer

must decide whether to take the property as asking, submit a counter offer, or

walk away. The buyer is aware that a seller’s market exists, but they are unaware

1Gambit is an open-source collection of tools for doing computation in game theory.
2A subgame G(h) of the sequential game G, beginning at the non-terminal history h, consists

of the players in the game, any terminal histories for which h is its initial party, and the player
function and preferences inherited from the full game. The game G is a subgame of itself, and
there is a proper subgame for each non-terminal history of the game [9].
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2.1 Case I: Extensive Game

if the property was listed high, to increase the realtor’s commission, or low, for a

quick sale. While they can achieve a payoff of 6 by taking the property at asking

if a low list price was submitted, they can receive a payoff of −10 if a high list

price was submitted. From their knowledge of the seller’s market, it is in their

best interest to walk away due to their belief that the realtor would list high in

such a market. This assigns them a payoff of 0 rather than −10 or, potentially,

−5. Seeing as the buyer’s belief system matches that of the realtor’s strategy at

P24, consistency of beliefs has been established.

The weak sequential equilibria is stated using an assessment of the players’

strategy profiles (s) as well as their beliefs (β). Strategy profiles reflect sequen-

tially ration behavior for the players at each of their information sets, while

beliefs reflect a consistency of beliefs as to how each player believes the opposing

player(s), for which they have imperfect information, to have acted. The follow-

ing is the assessment for the weak sequential equilibrium derived from this game

model.

(s, β) = ((sSeller, sRealtor, sBuyer), (βSeller, βBuyer))

where

sSeller = (s(P11), s(P12), s(P13), s(P14)) = (A,A,A,A)

sRealtor = (s(P21), s(P22), s(P23), s(P24), s(P25), s(P26)) = (L,E,E,H,E,E)

sBuyer = (s(P31), s(P32)) = (C,W )

βSeller = (β(P11), β(P12), β(P13), β(P14)) = (L,L,H,H)

βBuyer = (β(P31), β(P32)) = (L,H)

As defined by the assessment above, the expected player payoffs based on the
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2.1 Case I: Extensive Game

weak sequential equilibrium is

1

2
(A;L,E;C) +

1

2
(A;H,E;W ) =

1

2
(8, 8, 8) +

1

2
(0, 0, 0) = (4, 4, 4). (2.1)

2.1.3 Interpreting the Equilibrium

This interprets such that, if in a buyer’s market, the realtor should focus on

listing the property for quick sale. The buyer, aware of the current market,

should counter under the assumption that the seller is motivated. Under the

assumption that a reasonable counter has been made within the range of fair

market, the realtor should, in turn, encourage the seller to accept the offer as this

would allow him to received a reduced commission but as quickly as possible. The

seller, who is motivated under the current market, should accept the reduced offer.

If in a seller’s market, the realtor should extend market exposure by listing

the the property at the higher end of fair market, in order to receive the highest

possible commission. Accordingly, a rational buyer, strictly looking at monetary

gain, should walk away from the offer. In such a scenario the seller would not

even get a chance to act.

It isn’t trivial to point out that the realtor, as a negotiating third party with

vested interest, maximizes their profit when aligning their strategy with that of

the seller. This means in a buyer’s market, the realtor should place higher priority

reducing market time rather than extending market exposure to possibly attain

a higher commission. In a seller’s market, where the seller is indifferent about

selling unless presented with a substantial offer, the realtor should be unconcerned

with time and extend market exposure in maximize their commission. As can be

seen in Figure 2.2, when the realtor and seller strategies align, payoffs dominate

outcomes with misalignment.
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2.2 Case II: Bayesian Game

2.2 Case II: Bayesian Game

Bayesian games look not only at the number of players but also at potential types

of each player as well. This introduces incomplete information into the game, as

players are unaware of the type of players they are facing and must incorporate

a probability distribution over all possible types. This provides a more realistic

approach to buyer-seller behavior as the market isn’t always indicative of how a

player values a property. In the extensive game, it was assumed that a buyer’s

market was indicative of a motivated seller while a seller’s market was indicative

of an indifferent seller. Since players were aware of the current market, they

could rightfully assume the actions of their opponent(s), this of course being if

the realtor aligned their strategy with that of the seller. Bayesian games make no

such assumptions. Therefore, this removes the need for consideration of the type

of market all together. Rather, player values exist on intervals, where conditionals

dictate player payoffs. Gillman and Housman [9] formally define Bayesian games

as consisting of the following:

Definition 3 A Bayesian game consists of the following

1) A set N = {1, 2, ..., n} of at least 2 players.

2) A set Ti of types for each player i such that T = T1 × T2 × ... × Tn is

the set of type profiles known as the type space.

3) A set Ai of actions available to players i for each i ∈ N .

4) A set of outcomes O = A = A1 × A2 × ...× An that occur when typed

players choose their actions according to their type profiles

5) Belief functions φi where φi(t−i|ti) is the probability that the other

player types come from the type profile t−i given that player i has type
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2.2 Case II: Bayesian Game

ti. The function φi is a probability distribution on the truncated type

space T−i = T1 × T2 × Ti−1 × Ti+1 × ... × Tn. (The notation t−i ∈ T−i
indicates a type profile with ti removed.)

6) A rule stating that players simultaneously choose actions after privately

learning their own types.

7) Utility functions ui where ui(a|ti) is the cardinal utility player i of type

ti ascribes to outcome a, for each player i.

While we are neglecting to consider the type of market, several assumptions

will still need to be considered in determining exactly what market value value is

and the player’s perception of that value. The following assumptions are retained

from the extensive model:

Assumption 1. The buyer’s valuation is synonymous with market value.

Assumption 2. Market value is the midpoint on the fair market interval.

In addition, the following assumptions will be made in regards to the market:

Assumption 3: Market value accounts for location, school district, recre-

ational facilities, and other such amenities.

Assumption 4: The seller values the property at precisely market value.

Although real estate, as much as any other type of good to be sold, can elicit

emotional and irrational behavior from both buyer or seller, it is important to

remember that game theory only considers rational decision making. The best

way this can be represented is by calculating players payoffs solely through gains

or losses of monetary value.

Assumption 5: The seller and buyer are strictly motivated by monetary

gain.

22



2.2 Case II: Bayesian Game

Using what we know about about the market and how players perceive it, we can

define the expected payoff utilities for each of the players.

2.2.1 Defining the Players’ Utilities

When defining the player utility functions, consideration must be given to when

an offer would be accepted or otherwise. To maintain rationality in this decision, a

reserve price (p) will be introduced to the the model. This strategy, while selected

by the seller, is strategically influenced by the realtor in attempt to achieve their

preferred outcome: a maximized commission as a result of a maximized sale price,

a reduced commission as a result of a quick sale. Additionally, this allows the

seller to, potentially, maximize their sale price while also rejecting all other offers

below that threshold. It is important to note that this value can be above, below,

or directly at market value, based on the the seller’s and realtor’s motivation. The

seller still values the property at market value. In the event that the seller sets a

reserve price below market value (m) this would indicate the seller, motivated by

factors not accounted for in this model, is willing to take a negative payoff. This

must be understood in order for rational play to be considered consistent.

Assumption 6: The seller’s reserve price p of the property is a privately

known, realtor-influenced, lowest acceptable offer price.

2.2.1.1 Seller’s Utility Function

ES = Pr{v ≥ p}∗E
[

1

2
(v−m− cL) +

1

2
(v−m− cH)

]
+Pr{v < p}∗E[m] (2.2)

The seller’s utility function is defined by the buyer’s offer (v), the current

market value (m), and whether or not they are dealing with a realtor seeking a

high commission (cH) or low commission (cL). This utility function is inclusive of

the seller’s payoff under acceptance and rejection of the buyer’s offer. A probabil-
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ity of acceptance (Pr{v ≥ p}) is assigned for conditions under which the buyer’s

offer is at least equal to or greater than the seller’s reserve price. Under this

condition, the expected payoff (E) is buyer’s offer minus the minus the market

value and the realtor’s commission. A sum of the payoffs, given the likelihood of

the two types of realtors, is included in the utility. In the event that the v ≤ m

the seller would receive a negative payoff under the accepted conditional. The

buyer’s offer must be greater than market value by an amount equal to that of

the realtor’s commission in order for the seller to simply break even. In the event

that the buyer’s offer is less than the seller’s reserve price (Pr{v < p}), the seller

would receive an expected payoff of the market value, since they retain the value

of their property.

2.2.1.2 Buyer’s Utility Function

EB = Pr{v ≥ p} ∗ E[(m− v)] + Pr{v < p} ∗ E[0] (2.3)

The buyer’s strategy is defined by the variable v. Similar to the seller’s reserve

price, the buyer’s offer may be greater than, less than, or equal to market value.

This strategy is representative of how motivated the buyer is to purchase the

property in question. Since each payoff is defined by monetary gain to the player,

the expected payoff to the buyer (E), under the condition that the offer is accepted

(Pr{v ≥ p}), is calculated by finding the difference between market value and

the buyer’s offer. A negative payoff to the buyer would occur if their strategy

causes them to exceeds market value. While this may seem irrational on the part

of the buyer, their motivation to exceed market value might indicate a seller’s

market with a higher reserve price. A scenario in which the buyer always values

the property at market value but uses v as a strategy to achieve the best deal

possible could be explored in future study but will not be analyzed in this model.

If the buyer’s offer fails to at least meet seller’s reserve price (Pr{v < p}), they
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would receive a payoff of 0, since there is no monetary gain or loss.

2.2.1.3 Realtor’s Utility Function

ER = Pr{v ≥ p} ∗ E
[

1

2
cL(v) +

1

2
cH(v)

]
+ Pr{v < p} ∗ E[0] (2.4)

The realtor’s strategy is in selection of their commission rate. A realtor look-

ing to maximize their commission would would select cH while a realtor more

concerned with making a quick sale would likely select cL. This presents the re-

altor with two different types in their type space. A belief function, φi, is applied

as a probability distribution over the type space. In the case of the realtor’s

utility function a 50/50 probability has been applied to either of the realtor’s

types. Their expected payoff, under the condition that the buyer’s offer is ac-

cepted (Pr{v ≥ p}), is the sum of their selected commission rate multiplied by

the buyer’s offer over the type space. If the buyer fails to submit an acceptable

offer (Pr{v < p}), the realtor would receive an expected payoff of 0, since they

gain nothing but likely retain their client for future offers.

Player utilities are composed as the sum of two separate expected payoffs

under opposing probability conditions - (Pr{v ≥ p}) and (Pr{v < p}). Since v

and p are independent of each other, as neither player is aware of the opposing

player’s strategy/offer before the onset, a probability of 1
2

has been assigned to

each. The player utilities can be further reduced to the following:

ES =
1

2
(v − mL +mH

2
− cL(v) + cH(v)

2
) +

1

2
(
mL +mH

2
) (2.5)

EB =
1

2
(
mL +mH

2
− v) +

1

2
(0) (2.6)

ER =
1

2
(
cL(v) + cH(v)

2
) +

1

2
(0) (2.7)
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where

p, v ∈ [mL,mH ], cL, cH ∈ [0.05, 0.06]

The realtor’s commission, cL and cH , exists on separate intervals where the

values of the max and min on the bounded interval are typical across various

market climates. For the purpose of this study, the bounded interval for cL

will be defined as [0.05, 0.055] and the bounded interval for cH will defined as

[0.055, 0.06]. Random selection across these intervals is uniformly distributed for

both types of realtor. Since counter negotiating is not being considered in this

model, the realtor’s payoff is consequentially assigned according to the selected

commission of the final sale price as opposed to the selected list price, as seen in

the previous model.

Fair market is now defined as the interval [mL,mH ], where mL is the lower

bound of fair market and mH is the upper bound. The seller’s reserve price

and the buyer’s offer both exist on this interval. Also, market value, previously

defined as the midpoint of fair market, has been rewritten in terms of the interval

as (mL +mH)/2.

2.2.2 Simultaneously Played Games

As game theory looks to maximize payoffs for players of conflicting interest, this

may happen through sequential or simultaneous play. In simultaneous games,

players select their strategy independently from each other. After all players

select their strategy the game is initiated and everyone plays at once. Payoffs

are then assigned according to a defined utility function. Since our model has

three utility functions (ES, EB, ER), we maximize them simultaneously in order

to achieve optimality. Multi-objective optimization is incorporated, where each

player’s payoff function is an objective function to be maximized. The next
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chapter expands on these methods to calculate optimal payoffs for each of the

players using evolutionary multi-objective optimization.

27



Chapter 3

Methodology

3.1 Mulit-Objective Optimization

A multi-objective optimization problem (MOOP) looks at multiple functions in

which the goal is either to maximize or minimize each function simultaneously.

Each function is composed of variables, known as decision variables, and con-

straints that directly impact the outcome. The space in which all possible values

for the decision variables exist is known as the decision space. Constraints on the

decision variables will have an effect on the size and shape of the decision space.

The number of decision variables across the objective functions determines the

dimensionality of the decision space. Multi-objective optimization maps refer-

ence points within the decision space to a separate space defined by the objective

functions known as objective space. Similar to the decision space, the number

of objective functions determines the dimensionality of the objective space. Di-

mensionality between the decision and objective spaces need not be uniform. To

generalize, multi-objective optimization is a mapping between an n-dimensional

solution vector and an M -dimensional objective vector [4]. An illustration of this

idea can be seen in Figure 3.1.
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3.1 Mulit-Objective Optimization

Figure 3.1: Schematic of multi-objective mapping. The performance
of any given parameter set is mapped into an objective space using a
ranking function which quantifies the quality of the parameters. This

image has been reproduced from Bassen et al [3].

Once the objective space has been composed of the specified population of

reference points from the decision space, a Pareto-optimal solution1 is found. In

MOOPs, there is no singular solution, but rather a set of solutions dependent on

whether the objective functions are looking to be maximized or minimized. This

set of possible solutions is known as the Pareto-optimal front. Within the Pareto-

optimal front sits all possible non-dominated values that meet the conditions of

the system of objective functions. The Pareto-optimal front is defined by the

reference points that sit on that edge of the objective space. Inferences can be

made as to what the true Pareto-optimal front looks like based on the population

of reference points. The illustration above (Figure 3.1) maps a Pareto-optimal

front for which the objective functions are being minimized.

A common MOOP considers decision-making during the car-buying process.

A buyer might consider a variety of factors when looking to buy a car; two of

which could be the cost and comfort of the vehicle. For this example, it is safe

1A Pareto-optimal solution is a solution where a trade-off exists between values such that
no value in the solution can be increased/decreased without decreasing/increasing another [4].
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3.1 Mulit-Objective Optimization

Figure 3.2: Trade-off solutions for an illustrated car-buying
multi-objective problem [4].

to assume that an inexpensive car is less comfortable than an expensive one (see

Figure 3.3). If the buyer’s only objective is to reduce the cost as much as possible,

then solution A would be the optimal choice. Alternatively, if the buyer is only

concerned with maximizing the comfort of the vehicle, then solution E would be

the optimal choice. In either scenario, the buyer holds a single objective which

affords them a singular solution. However, if the buyer is looking to maximize

the comfort while minimizing the cost, this presents an MOOP. The curved line

in Figure 3.3 represents the Pareto-optimal front, and the points on that curve

represent Pareto-optimal solutions. In our case, each dot represents a different

vehicle the buyer might consider given their objectives. Each one of these points

on the Pareto front are non-dominated, meaning there is a trade-off between cost

and comfort as you move across the curve. Moving from one point to the next

will increase one of the objectives while decreasing the other. Therefore, A, B,

C, D, and E are all considered to be solutions to the MOOP [4].
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3.1.1 Evolutionary Algorithms

Evolutionary algorithms (EA) are a computational, heuristic-based approach to

solving MOOPs. The basis of how these algorithms work is rooted in biological

evolution, particularly natural selection [5]. In an EA, ideal members will survive

and proliferate, while unfit members will die off, failing to contribute to the gene

pool of further generations. This happens through a four-stage iterative process

of initialization, selection, genetic operators, and termination.

Figure 3.3: Natural selection process for evolutionary algorithms [5].

3.1.1.1 Initialization

In this first stage, a population of randomly generated members will be selected

from the decision space. The size of the population will determine the number of

possible solutions in the output. This could also be thought of as the number of

reference points to populate the Pareto-optimal front. While population selection

is random, a distribution could be applied to the selection, whether that be

uniform, beta, etc [5].

3.1.1.2 Selection

During selection, the each member of the population is evaluated according to

the objective functions in the MOOP. Non-dominated solutions are identified as

part of the Pareto-optimal front. These members form the bound for all other

dominated solutions [5].
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3.1.1.3 Genetic Operators

Since the goal is to populate the Pareto-front with the entire population, genetic

operators are applied to output of the selection process. In the crossover operator,

the top, most well-fit, members are selected as a parent population. The size

of this parent population can differ based on the EA being used. This new

parent population determines the next generation of the algorithm by selecting a

offspring population based on the genetic information its current members. The

members of the offspring population has a mixture of the genetic qualities the

parent population possesses [5].

Next, a mutation is applied across the new offspring population to ensure

they no longer perfectly mirror the genetic subsets of the parent population.

This prevents the optimized output from being stuck in a local extrema, failing

to show true optimality in the results. Typically, the chance of the offspring

receiving the mutation as well as the intensity of the mutation is determined by

a probability distribution [5].

3.1.1.4 Termination

The final stage of the evaluation process occurs under one of two conditions. 1)

The specified number of generations is reached. 2) The threshold of performance

is reached. When either of these conditions occur, the process terminates, and

the output is provided [5].

3.1.2 Evolutionary Multi-objective Optimization (EMO)

This study uses evolutionary algorithms that emphasize non-dominated solution

sets, as game theory particularly looks at non-dominated outcomes. If P is to be

the set of all feasible values in objective space, then P ′ is the subset of all non-
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3.1 Mulit-Objective Optimization

dominated solutions, also referred to as the Pareto-optimal set. Evolutionary

algorithms are able to find these non-dominated solutions efficiently across a

variety of objective spaces, including those that might be discontinuous or concave

[4].

A multi-objective evolutionary algorithm (MOEA) typically uses one of two

methods to find a Pareto-optimal front. The first method looks to find the best

non-dominated solutions for a population. Once each member of the population

are mapped into the objective space, they are individually compared with one

another to determine dominance. If a member is non-dominated then it is added

to the subset P ′. This process is continued until all members have been compared

with each other, and P ′ is solely comprised of non-dominated solutions [4].

The second method takes a somewhat different approach to the previous

method, assigning members of the population to different levels of dominance.

Rather than isolating non-dominated solutions from all other members of the

objective space, all members are assigned to one of potentially many fronts. The

process is continued across all members of the population until no members are

left without an assigned front. The number of levels is determined by the spread

Figure 3.4: Sorting of population members into non-dominated
fronts based on levels of dominance [4]
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3.1 Mulit-Objective Optimization

and shape of the population in objective space. Those solutions populating the

Level 1 front are considered to be most dominant, while subsequent levels are less

dominant (see Figure 3.4). Once a member is sorted into its appropriate non-

dominated level, it is never visited again, reducing the computational complexity

that is required for the first method [4].

3.1.2.1 NSGA-II

One very popular MOEA that utilizes a non-dominated sorting method is NSGA-

II (non-dominated sorting genetic algorithm-II). A schematic of how this algo-

rithm works can be seen in Figure 3.5. To start, an offspring population is

generated using genetic operators on the parent population (N), such that the

combined population of parent and offspring is equal to twice the size of the orig-

inal parent population (2N) [17]. Non-dominated sorting assigns every member

of the population to a front based on each member’s overall dominance. Since

the new generation’s population needs to be the same size as the original parent

population, members are selected starting with Front 1 and moving to subsequent

fronts until a front must be split in order to fill the remainder of the new gen-

eration. At this point a crowding distance1 metric is utilized to determine what

members of that specific front are best. Crowding distance is calculated using

the following formula [18]:

CDim =
fm(xi+1)− fm(xi−1)

fm(xmax)− fm(xmin)
, i = 2, ..., (l − 1) (3.1)

In the formula above fm is the objective function, xi is the reference point, xi+1

and xi−1 are the two neighboring solutions, xmax and xmin are the maximum and

minimum values in the population, and l is the size of the population. Boundary

members on the front are assigned a crowding distance of ∞, since they don’t

1Crowding distance calculates the average distance of a member’s two neighboring solutions.
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3.1 Mulit-Objective Optimization

have neighboring solutions on either side. The crowding distance for all members

between the boundary points is calculated using the metric given above. Fro each

objective functions, the outputs of the two neighboring solutions are subtracted

and then divided by the difference in the outputs of the minimum and maximum

values in the population. This, in a sence, normalizes the calculated distance.

The crowding distance for each member on the front is then added across all

objective functions.

CDi =
M∑

m=1

CDim (3.2)

Those members with the larger crowding distance are selected to be a part of the

next generation. This allows for greater exploration of the objective space [18].

All remaining members of the split front and all succeeding fronts are then

removed from the gene pool. This entire process comprises the construction of one

new generation of the parent population. Through programs, such as PlatEMO,

NSGA-II can be run for hundreds, even thousands, of generations in just a short

period of time, each new generation providing a more accurate representation of

the Pareto optimality.

Figure 3.5: Schematic of the NSGA-II procedure. This image has
been reproduced from Mittal and Deb [6].
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3.2 Implementation

3.2.1 Tools

The objective functions for each of the players were coded and run in a MATLAB-

based evolutionary multi-objective optimization platform extension known as

PlatEMO [2]. Developed in 2017, this platform allows for users to run and test

several different multi-objective problems using a variety of evolutionary algo-

rithms such as NSGA-II, NSGA-III, SPEA2, ε-MOEA, etc. While other MOEA

libraries do exist, PlatEMO is unique in that it offers users a GUI for ease of

access and output comparison between algorithms. PlatEMO is also easily ex-

tensible, allowing users to code in and use their own MOOP and algorithms, all

of which is full developed in the MATLAB language.

Figure 3.6: GUI for the test module of PlatEMO

Within the interface, the user defines the problem to be solve and selects the

algorithm to apply. Next, the population size (N), number of objective functions
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3.2 Implementation

in the problem (M), number of decision variables (D), and maximum number of

fitness evaluations must be specified. Once all parameters are selected, the user

must simply initiate by clicking the play button at the bottom of the GUI. A

graphical animation can be seen as the MOOP is run through the algorithm over

the specified evaluations.

3.2.2 Coding the Problem

Using the PlatEMO extension in MATLAB, a new MOOP labeled BSN1 (i.e.

Buyer-Seller-Negotiator-1) was coded, defining the player payoff functions as the

objective functions to be maximized simultaneously. The body of the code sits

within the command “methods”. The code is then broken up into 3 subsections:

Initialization, Calculation, and Sample Plotting.

3.2.2.1 Initialization

The Initialization section defines the domain of BSN1 where M stands for the

number of objective functions and D stands for the number of decision variables.

In the GUI, the user will assign M , and D to match the values coded in the

MOOP they are looking to explore. The population size, N , will also need to be

assigned by the user in the GUI. Lower and upper bounds are defined for all de-

cision variables using the command obj.Global.lower and obj.Global.upper,

respectively. The buyers offer exists on the interval [0, 1] where 0 is the lower

bound of the decision variable and 1 is the upper bound. Additionally, commission

selection for a realtor looking for a quick sale exists on the interval [0.05, 0.055],

and commission selection for a realtor looking to maximize their commission ex-

ists on the interval [0.055, 0.06]. Finally, the encoding has been set to “real” as

opposed to “binary” or “permutation”, since we are exclusively dealing with a

real-valued problem.
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3.2 Implementation

Figure 3.7: Initialization section of the source code for BSN1

3.2.2.2 Calculation

Calculations of the objective functions succeeds initialization. PopDec refers

to the population of the decision variables. This is a vector of values where

each value is a 3-tuple, containing one value for each dimension of the decision

space. The decision variables are the buyer’s offer, PopDec(:,1), the realtor’s low

commission selection, PopDec(:,2), and the realtor’s high commission selection,

PopDec(:,3). Population selection from the decision space occurs over a uniform

distribution.

PopDec =
〈

(xi, yi, zi), . . . , (xN , yN , yN)
〉
, i = 1, ..., N (3.3)

where

PopDec(:,1) = (xi, ..., xN)
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PopDec(:,2) = (yi, ..., yN)

PopDec(:,3) = (zi, ..., zN)

This vector is then applied to the objective functions, producing an N × 3

number of rows is equal to the size of the population and the number of columns is

equal to the number of objective functions. In the matrix PopObj, PopObj(:,1)

references the seller’s objective function, PopObj(:,2) the buyer’s objective func-

tion, and PopObj(:,3) the realtor’s objective function.

PopObj =


f1(xi, yi, zi) f2(xi, yi, zi) f3(xi, yi, zi)

...
...

...

f1(xN , yN , zN) f2(xN , yN , zN) f3(xN , yN , zN)

 , i = 1, ..., N

(3.4)

where

PopObj(:,1) = (f1(xi, yi, zi), ..., f1(xN , yN , zN))

PopObj(:,2) = (f2(xi, yi, zi), ..., f2(xN , yN , zN))

PopObj(:,3) = (f3(xi, yi, zi), ..., f3(xN , yN , zN))

Figure 3.8: Calculation section of the source code for BSN1

3.2.2.3 Sample Plotting

The final section of the code creates sample reference points on the Pareto front.

A matrix of values containing all sample points for each objective function is
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constructed. Each column in P corresponds to the exact same column in PopObj.

The exception here is that PopDec is replaced with an interval and step size for

evenly spaced sample points within the interval of the decision variable based

upon the size of the population. For instance,

(obj.Global.lower(:,1):(obj.Global.upper(:,1)-obj.Global.lower(:,1))/(N-1):obj.Global.upper(:,1))

creates a population of sample points in the interval of decision variable one

from the low end to the high end with a step size equal to the range of the

interval divided by one less the population size. Each decision variable, PopDec,

is specified in this way for P(:,1), P(:,2), and P(:,3). It is important to note

that number of columns in P must match the number of columns in PopObj, as

this value specifies the dimensions of the objective space.

Figure 3.9: Sample plotting section of the source code for BSN1

Once coded, the GUI can be accessed and the algorithm to use, problem to

solve, population size, number of objective functions, number of decision vari-

ables, and number of evaluations can be specified by the user. From here, results

can be generated for the simultaneously maximized player utilities (see Figure

3.6).
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Chapter 4

Experimental Results

4.1 Pareto Front

PlatEMO’s test module was utilized and the appropriate values and options were

selected. NSGA-II was selected for the algorithm dropdown, BSN1 was selected

for the problem dropdown, the population size was initially set to 100, M (the

number of objective functions) was set to 3, D (the number of decisions variables)

was also set to 3, and evaluations was set to 10000 (see Figure 3.6). The resulting

output appears to indicate the Pareto-optimal front is a straight line in objective

space.

In Figure 4.1, the seller’s range of payoffs can be seen along the f1 axis, the

buyer’s along the f2 axis, and the realtor’s along the f3 axis. We can interpret

the Pareto front to indicate an increase in the realtor’s payoff is a reflection of

an increase in the seller’s payoff. Also, as the payoff’s increase for the seller and

realtor, the buyer’s payoff decreases. This is representative of typical market

behavior between the three parties.
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4.1 Pareto Front

Figure 4.1: Pareto front for BSN1 under NSGA-II using a population
size of 100

However, there appeared to be some scattering of solutions near the top of

the front. To better explore this, the population size and number of evaluations

were increased to 500 and 30000, respectively. This allowed for a larger sample to

be drawn from the decision space and for triple the number of generations to be

evaluated. The evaluating algorithm was also changed from NSGA-II to NSGA-

III. The primary difference between these two algorithms is that NSGA-III uses

reference points to maintain diversity among the solutions on the Pareto front.

This allows for a more even distribution of points to better explore the objective

space and the true Pareto front. NSGA-III works particularly well with three or

more objective functions [19]. A comparison of how the two algorithms perform

under the increased parameters can be see in Figure 4.2.

While the difference between the two algorithms is somewhat subtle, NSGA-

III provides a more defined border to the Pareto-optimal front. It can now be
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4.1 Pareto Front

Figure 4.2: A comparison of the Pareto front in objective space using
NSGA-II and NSGA-III

seen that the front, rather than a line, is a thin 2-dimensional pennant in the

objective space. The influence in payoffs between the players still maintains the

same behavior shown using NSGA-II with the smaller population size. To strictly

look at the influence the realtor has on the seller’s payoff, the objective space was

rotated to show a 2-dimensional plane where the x-axis is the seller’s payoff and

the y-axis is the realtor’s payoff. Figure 4.3 can be interpreted by stating that as

the seller’s payoff increases, the range of possible payoffs for the realtor increases.

This could potentially be explained due to the existence of two types of realtor

within the same objective function.

When interpreting player payoffs, it is important to remember that a proba-

bility of 1
2

was applied to the player payoffs under the condition that the buyer’s

offer is greater than or equal to the seller’s reserve price and 1
2

for when it is less.

This explains why objective space is truncated to values within the range [0, 0.5]

for the seller’s payoff (f1), [−0.25, 0.25] for the buyer’s payoff (f2), and [0, 0.03] for

the realtor’s payoff (f3). The range for each of these payoffs is half the interval on

which the decision variables lie. For instance, if the realtor chooses a commission

of 6%, they have a 50% chance of achieving this commission and a 50% chance

of gaining nothing depending on whether the buyer’s offer is at very least equal
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4.1 Pareto Front

Figure 4.3: 2-dimension representation of the Pareto-optimal front
when only considering the seller’s and realtor’s payoffs

to the minimum sale price. Therefore, the expected payoff for the realtor would

result in a 3% commission of the buyer’s offer.

It is also worth noting that the seller cannot receive a payoff less than 0, as he

will always retain the value of his property in a scenario that the sale does not go

through, even if that value is negligible. The realtor cannot receive a payoff less

than 0 either, since they have not monetarily invested in the property outside of

their time. However, the buyer can choose to make an offer over market value,

although still in the fair market interval, in effort to meet the reserve price. This

can be seen in Figures 4.1 and 4.2 as the buyer’s payoff ranges on the interval

[−0.25, 0.25] as opposed to [0, 0.5].

The Pareto set is the population on the Pareto-optimal front projected back

to decision space. This allows the user to identify optimal values for the decision

variables. Figure 4.4 shows the location of each member in the Pareto set in deci-

sion space. The buyer’s offer selection can be seen along the f1 axis, the realtor’s
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low commission selection along the f2 axis, and the realtor’s high commission

selection along the f3 axis.

Figure 4.4: The Pareto set mapped to the decision space

From the plot of the decision space in Figure 4.4, it would appear optimality in

player payoffs exists when f2 and f3 are maximized or minimized. This suggests

that the realtor should select the the highest or lowest possible commission rate,

but hardly between those two values. Since we are looking at two different types

of realtors, it would make sense for a realtor looking to for a quick sale to always

select the lowest possible commission rate and a realtor looking to maximize their

profit to select the highest possible commission rate.

4.2 Comparison & Analysis

As was stated in Chapter 2, the results of the extensive game model indicated

that it is within the realtor’s best interest to align their strategy with that of the

seller’s. This is can be seen in the weak sequential equilibrium (equation 2.1). In
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a seller’s market, the seller is assumed to be motivated, suggesting the realtor is

better off to list the property for a quick sale; whereas, in a buyer’s market, the

seller is assumed to be indifferent, suggesting the realtor should list the property

on the higher end of fair market.

The results from the Bayesian game model reiterate those from the extensive

game model. Optimal payoff values exist on a line where the realtor’s payoff

increases in conjunction with the seller’s payoff, and the buyer’s payoff decreases

accordingly. If we assume that a seller, whose payoff is closer to 0, values decreased

market time exposure more than monetary gain, then this should be reflected in

the realtor’s commission selection. A realtor looking to maximize their commis-

sion in a market where the seller is motivated would result in a payoff outside

the Pareto front displayed in Figures 4.1 and 4.2. Given the the Pareto-optimal

front consists of all non-dominated payoffs within the objective space, it can be

assumed that the Nash equilibrium for the Bayesian game is located somewhere

on that front. However, the method for finding such a solution is outside the

scope of this project.
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Chapter 5

Conclusions

5.1 Application

The purpose of the models created for this study is to determine what influence

a negotiator has on player payoffs in a buyer-seller game. When studying game

theory, negotiators are rarely addressed/used when considering interactions be-

tween a buyer and seller. All negotiations, if any, are typically handled by the two

engaged parties. By adding a vested third party interest to the game, it is made

clear that player payoffs are dependent on how the acting third party aligns their

strategy with those they are mediate for. Assuming alignment is made between

the seller and negotiating party, the seller’s final payoff, at very best, will still be

less than if the third party were not considered, due to the required commission

for the negotiator. This explains the rarity of negotiating parties in buyer-seller

games.

While, this study focuses on the influence of a negotiator in relation to the

real estate market, much of the findings from this research could be generalized to

other such scenarios involving a vested negotiating party receiving some form of

commission. Rationality from the models in this study suggests the realtor to only

have a negative influence on player payoffs, particularly when divergent in their

strategy selection with that of the party they are acting on behalf. By excluding
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the negotiator from a buyer-seller model, the two parties, while still working

with imperfect information, can ensure their strategy is not being neglected by a

negotiating self-interested party.

5.2 Future Study

Random selection for each of the decision variables in the Bayesian model is done

using a uniform distribution. This is the generalized distribution for decision vari-

ables within the PlatEMO extension for MATLAB. However, when considering

the realtor, it would make much more sense that there would be a skewed dis-

tribution to commission selection based on the type of realtor playing the game.

A beta distribution where the mean, standard deviation, and skew, representa-

tive of the type of realtor, would need to be specified. This would allow for the

distribution to define the type of realtor as opposed to the bounds on the interval.

〈Cmean〉〈Cmedian〉

Figure 5.1: Right-skewed distribution representative of
commission selection for a realtor looking to maximize

their commission
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〈Cmean〉 〈Cmedian〉

Figure 5.2: Left-skewed distribution representative of
commission selection for a realtor looking for a quick sale

The realtor’s commission, c, would exist on a singular interval where the range

of the max and min value of the bounded interval are typical across various

market climates. A realtor with a desire to maximize their commission would

apply a right-skewed distribution to their commission selection where the mean

would, most likely, exceed the median; whereas, a realtor looking for a quick sale

would apply a left-skewed distribution to their commission selection where the

median would, most likely, exceed the mean of the interval.

Expected payoff to the realtor could also be separated into two separate ob-

jective functions: one for a realtor looking to maximize their commission and the

other for a realtor looking for a quick sale. This would alter the objective space

from being 3-dimensional to 4-dimensional, Analysis and interpretation would re-

quire restricting the output to specific objective functions in order to determine

the effects of one player on another.
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