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INTRODUCTION 

As the demand for renewable energy grows, the investigation of potential battery 

materials continues to progress hastily. Many devices and machines of present day are operated 

by battery technology, and their energy requirements warrant which kinds of batteries will power 

them. The battery in a phone requires hundreds, possibly thousands, of uses and needs to be able 

to recharge quickly. The battery in the implantable cardiac defibrillator (ICD), the battery by 

which this product was inspired, is only used once, but it must last years before it is replaced. 

The cathode of the ICD battery is comprised of a silver and vanadium compound. Silver has a 

large affinity for electrons, making it a popular candidate for battery studies, and vanadium has 

shown tremendous promise in numerous other battery studies to date.1-4 Instead of silver-

vanadium compounds, this project examines four silver-molybdenum complexes referred to as 

silver molybdates (Ag2MoxOy). The four complexes are shown in Figure 1.  

 

 
Figure 1: The four silver molybdate complexes. Blue = Mo, Silver = Ag, Red = O. 

 

 



Molybdenum has received much less attention than vanadium in battery research, but its 

higher oxidation state potentially permits coordination with more silver atoms, which could very 

well improve on the current structure of the ICD battery. Even if these compounds are not 

destined to be the next ICD battery, this project proposes a new, energy-related perspective on 

molybdenum-based materials and a chance to further understanding of uncharted territory in 

chemistry. 

 

BACKGROUND 

The basic principles of a battery are important for understanding the desired properties 

scientists look for in a material and the common procedures they run to test candidates with 

promise. A battery consists mainly of a cathode and an anode separated by a liquid electrolyte 

and a separator (typically made of a special filter paper). When the battery operates, positively 

charged ions move through the electrolyte and separator to the cathode. Simultaneously, 

electrons travel from the anode via a connector of some kind (steel, wires, etc.). The electrons 

perform the desired electrical work, such as powering a phone, before they move to the cathode, 

where they reduce the cation in the active material and plate out a new solid (throughout which 

they can move and exist freely). Where cations are removed, ions from the anode take their 

place. Figure 2 illustrates this process with molybdenum and silver to better portray how the 

cathodes in this particular study will be functioning. This process shown in Figure 2 is known as 

a “discharge,” whereas the reverse of this process, during which electrons and ions move the 

opposite way, is referred to as “recharge.” 



 
Figure 2: A simplified schematic of the discharging process an operating battery undergoes. 

 

The most desirable batteries are fast, long-lasting, and quickly rechargeable. Finding the 

material(s) that are characterized by all three is the fundamental goal of battery research, but it is 

no small feat or easy search. Since the conventional battery structure is composed of several 

parts, finding the perfect setup is a challenge. However, having various modifications to explore 

keeps the field busy and invites viewpoints from many angles.  

While studies considering the most optimal separator or electrolyte are important, the 

investigation of the electrodes and how to prepare them is the heart and soul of current research. 

The most popular anodes are lithium, sodium, and zinc, but there are many other groups 

exploring ways to optimize this half of the battery. This project is less concerned with the choice 

of anode; however, it is still essential to note that zinc was the anode for all significant 

experiments throughout this project. In a lab environment, stable, inexpensive zinc is favored 

over the flammable, highly reactive lithium. Moreover, it is still frequently seen in many other 

battery investigations.5-7 

The focus of this project was directed towards the preparation and testing of four new 

cathodes composed of novel silver molybdate structures. The goal was not only to have a 

quantitative understanding of how these batteries performed, but there was also a need to explain 



why one battery worked better than another. Explaining the relative performances of the cathode 

was broken down into a narrative with several parts. 

Material Synthesis 

Logically, the project began with making the materials. Table 1 describes the general 

syntheses of the four silver molybdate compounds. Prior to any testing, significant differences in 

the procedures allowed for preliminary assumptions about how the materials might perform. 

According to general acid-base chemistry, Lewis acids are great electron pair acceptors. 

Applying the same thinking to the pH conditions of the materials, it may be predicted that the 

Ag2Mo3O10 is synthesized in the ideal environment (with the lowest, most acidic pH) for hosting 

an electron pair acceptor. Moreover, if silver is the primary electron acceptor in the structure, 

then the highest possible Ag:Mo ratio might be preferred over a lower ratio. This thinking would 

predict that Ag2MoO4 offers the most advantageous properties. However, the greatest Ag:Mo 

ratio exists in the substance synthesized in the the highest (most basic) pH, and the lowest ratio 

exists in the substance made in the lowest (most acidic) pH; therefore, a perfect correlation 

cannot be observed prior to further testing. 

 

Table 1: Synthesis procedures of the four silver molybdate materials.8-12 

Final Product (Ag:Mo Ratio) Synthesis Procedure 

Silver Monomolybdate: Ag2MoO4 (2:1) A solution of Na2MoO4 is added dropwise to 

a solution of AgNO3 and the resulting final 

product is vacuum filtered at pH 10. 

Monoclinic Silver Molybdate: M-Ag2Mo2O7 

(1:1) 

AgNO3 and MoO3 are mixed in 40 mL of 

water at pH 4.5 and heated for 5 hours at 

70°C. 

Triclinic Silver Molybdate: T-Ag2Mo2O7 

(1:1) 

Monoclinic silver molybdate (M-Ag2Mo2O7) 

is heated to 450°C for 5 hours. 

 



keV 

Silver Trimolybdate: Ag2Mo3O10•2H2O (2:3) Na2MoO4 is mixed with methylamine 

HCl. The pH of the solution is adjusted to 

~1.3 and heated in a hydrothermal vessel for 6 

hours. The precipitate is collected via 

filtration and refluxed with AgNO3 in 1 M 

HNO3 overnight. The final product is 

collected through filtration. 

 

Material Characterization 

Following syntheses, multiple techniques were used to confirm that the materials had 

been synthesized correctly and ensure there were no impurities present. X-ray fluorescence 

(XRF) made sure the appropriate elements – silver and molybdenum – were the only ones 

present in the product of each synthesis. In this method, X-rays excite the electrons in an 

element, and the photon it produces is read by a detector. The photon produced is specific to 

each element since every element has a different orbital configuration. Figure 3 depicts the 

resulting XRF spectra of the of the silver molybdates and a reference spectrum for the predicted 

peaks. 

             

Figure 3: XRF spectra of the reference peaks of elements (left) and silver molybdate products 

(right). Oxygen is not shown because it is not large enough to be detected by XRF. 

 



  XRF established that only the anticipated elements were present in the products, but X-

ray diffraction (XRD) techniques proved that the structures of the products formed as expected. 

In this technique, the angles at which X-rays diffract provide a spectrum of the distances between 

the atoms. Comparing the experimentally obtained spectrum to a reference spectrum checks for 

any impurities or structural issues in the yields of the final products (Fig 4). 

 

Figure 4: XRD spectra of the four silver molybdates. The black patterns represent the 

synthesized products, and the red patterns denote reference spectra. 

 

Electrochemical Prepping and Testing  

After XRF and XRD characterization had deemed the syntheses successful and without 

impurity, electrochemical testing began. The original cathode preparation procedure called for 

the mixing of the silver molybdates – also known as “active material” – with carbon black, and a 

liquid, organic binder in an 8:1:1 ratio. The slurry this mixture produced was then coated onto a 

   



piece of thin steel, from which small, circular cathodes could be hole-punched after drying. The 

carbon assisted with the movement of electrons through the substance, and the binder kept the 

mixture sealed to the steel surface. A circle punched from a well-coated area of the steel would 

then be assembled into an electrochemical cell (Fig 5) to make a testable battery.  

 

Figure 5: An animation and image of the cathode coating assembled into a functioning battery. 

In this setup, the coating acts as the cathode, and zinc acts as the anode. 2M ZnSO4 is applied 

dropwise to the cathode and separator, and it functions as the electrolyte. Fiber glass filter paper 

is used as the separator. The connectors are all made of steel. 

 

 

Over time, adjustments were made to this wet-coating procedure. With a hydraulic press, 

the dry pure materials (without carbon or binder) could be pressed onto steel mesh, and tested the 

same way shown in Fig 5. This was done to study the benefits of including carbon and binder in 

the mixes. Pressing was also helpful as a dry mixing procedure was explored and improved. 

Rather than creating a slurry, the active material, carbon, and binder were blended together and 

evenly dispersed by the addition of ethanol. Following the evaporation of ethanol, the remaining 

powder could also be dry pressed onto steel mesh and tested. This method poses an advantage 

over the wet-coating prep because it is less susceptible to detaching from the steel when the 



electrolyte is added, and it still allows for the analysis of an 8:1:1 ratio of material, carbon, and 

binder. 

Once the cathode had been assembled into a battery, “cyclic voltammetry,” or CV, was 

the first electrochemical test that needed to be conducted. This technique applies a sweeping 

energy to monitor current. Peaks in the CV indicate at which potentials elements are oxidizing 

and reducing. Prior to the procedure, it can be inferred that silver will begin to reduce near a 

potential of 1.0 volts and the molybdenum will reduce around a potential of 0.4 volts because the 

reference elecrode (anode) was zinc. Silver peaks appearing at a value greater than the anticpated 

1.0 V – like the silver trimolybdate peak in Figure 6 – may be indicative of high-energy silver. 

This test determines the appropriate voltage range in which to operate the silver molybdate 

batteries. Figure 6 provides example CVs obtained from wet coatings of Ag2MoO4 and 

Ag2Mo3O10. The CVs of all four samples determined similar voltage ranges (0.1 V – 1.7 V) in 

which the batteries should be tested. 

 

 

Figure 6: Cyclic voltamograms of wet-coatings. 8:1:1 mixtures of active material, carbon, and 

binder. The peak near 1.0 V represents the reduction of silver. The peak near 0.4 V represents the 

reduction of molybdenum.   

 

 



 Once this range was established, the discharging abilities of the batteries were tested in a 

technique known as chronopotentiometry (CP). This process harkens to Figure 2, which 

illustrates the movement of electrons and Zn2+ cations from the anode to the cathode. A battery’s 

discharging ability is measured by the unit milliamp hours per gram (mAh/g). This is commonly 

referred to as capacity, which is essentially the number of electrons the cathode can hold at a 

certain rate in milliamps per gram (mA/g). Mass data is included in the units to normalize 

performance to the amount of active material (excluding carbon and binder) in the material. The 

subsequent data provides potential (V) as a function of the material’s capacity (mAh/g). 

Generally, great batteries demonstrate large capacities at fast rates. For frame of reference, the 

familiar Duracell® battery, which also operates with a zinc anode, exhibits an approximate 

capacity of 300 mAh/g. With these thoughts considered, the performances of the silver 

molybdates are not only comparable with each other, but they can be judged with respect to other 

battery candidates in papers from other projects. 

The discharging capabilities of these compounds were assessed in several ways. The first 

analysis was done on the pure material without the aid of any carbon or binder. After the pure 

materials were pressed onto steel mesh and assembled into the electrochemical cell, they were all 

run at 50 mA/g of active material (Fig 7). The Ag2Mo3O10 and T-Ag2Mo2O7 materials performed 

the best, but this was only the first test. The following tests would add carbon and binder to the 

mixture. This is standard procedure in the battery community for research and commercial 

distribution. The carbon assists with the movement of electrons throughout the cathode, and the 

binder works to prevent the cathode from detaching from its metallic bottom. Since cations enter 

the cathode during battery operation, expansion will occur, and the binder will be necessary for 

keeping the material held down. 



 

 

 

Figure 7: 50 mA/g discharges of the pure (no carbon or binder) materials. 

 

The results were different when the materials were tested in the presence of carbon and 

binder. The discharges of all silver molybdates improved with the assistance from the carbon and 

binder, but the monoclinic material achieved a capacity around 300 mAh/g (Fig 8). When the 

rates were varied between 50 mA/g and 1000 mA/g, M-Ag2Mo2O7 continued to run at capacities 

between 250-300 mAh/g (Fig 9 and 10). Low rates were an exception for all four samples. This 



may suggest that the silver molybdates run most efficiently within a specific range. Aside from 

disappointing slow rate data, the results were clearly telling that the M-Ag2Mo2O7 cathode had 

the greatest capacity. The task of determining why this material ran the best was the next step. 

 

 

Figure 8: 50 mA/g discharges of the materials combined with carbon and binder (8:1:1). 



 

Figure 9: Discharges at different rates of the materials combined with carbon and binder (8:1:1). 

 

Figure 10: Discharges at 1 A/g of the materials combined with carbon and binder (8:1:1). 



 The CP program was set to run the battery to a certain voltage. A full discharge means 

that the battery operates until ~0.1 V, which ensures that both Ag and Mo were reduced. Having 

control over the stopping point allows for interval observations as the reaction occurs, and it 

makes it possible to explain why one battery operates more successfully than another. This 

technique not only tells which is quantitively better, but it offers the opportunity to continue the 

narrative as to why one is best or worst. For example, suppose one of the silver molybdate 

batteries runs until capacity reaches 0.8 V, a point at which only silver could have reduced. By 

analyzing the partially discharged cathode with XRD, the formation of silver can be verified, and 

the crystal sizes of the silver could be calculated. With XRD, this crystal size analysis was 

conducted on partial discharges of the silver molybdates (Table 2).  

 

Table 2: Crystal sizes of the materials before and after battery operation. Values were calculated 

with the Scherrer equation and peak widths from XRD spectra.  

 

Material 

Starting Material 

(nm) 

Discharge to 0.8 V 

(nm) 

Discharge to 0.2 V 

(nm) 

Ag2MoO4 29 8.7 17.4 

M-Ag2Mo2O7 22  15 11 

T-Ag2Mo2O7 12 14 16 

Ag2Mo3O10•2H2O 23 27.4 20.4 

 

 Although a relationship was predicted, the results were not telling of a relationship 

between crystal sizes and capacity. Crystal size values demonstrated some variance from one 

compound to another, but there was no logical trend. Initially, one might have thought that if 

silver was the primary electron acceptor, then a larger crystal size would have been indicative of 



a better battery material. However, this was not the case and inquiries would need to shift to a 

highly advanced technique known as scanning electron microscopy (SEM). In SEM, the sample 

is blasted with electrons, and the diffracting electrons create high-resolution images on the 

micron and nanometer scales of the surface of the material. This method is also capable of 

elemental mapping, when the electrons are projected deeper into the sample past its surface. 

 SEM was the next chapter in the narrative. If crystal sizes, pH conditions, and Ag:Mo 

ratios do not clarify the differences in the performances of the silver molybdates, then SEM may 

offer some reasoning. With SEM, the morphology of the materials and the grouping of the 

elements in the structures could be visualized. The distinct morphologies are immediately 

apparent when surface images are taken of each sample. In Figure 11, the best performing 

material, the M-Ag2Mo2O7, showed a morphology composed of nanowires. The Ag2Mo3O10 

compound did not demonstrate nanowires that were as well-defined as those of the monoclinic, 

but its morphology was still much less globular than those of the T-Ag2Mo2O7 and Ag2MoO4. 

These images of the pure materials taken before any battery assembly or reaction could be 

partially telling as to why monoclinic performs so well compared to the other three substances.  



 
Figure 11: SEM images of pure materials.13 

 

 

 Furthermore, partial discharge data was especially helpful in describing why some of the 

materials worked better than others. To coincide nicely with the images from Chicago State 

University, partial discharge images acquired at Argonne National Labs showed a noticeable 

relationship between the morphology of the active material and the elemental grouping following 

the reduction of silver in a pure material cathode. When analyzing the complete discharge data, it 

is clear that all cathodes experience drastic elemental separation when they are operated to 0.1 V, 

and it is difficult to spot significant or telling differences among the electrodes and the 

segregations of their elements. However, analysis of an electrode, in which only silver was 



reduced, finds differences between the materials that had been regularly successful and the 

materials that have normally struggled more times than not. 

 In the case of the best silver molybdate, M-Ag2Mo2O7, elemental mappings of discharges 

to 0.8 V found that the various elements present did not spread out in any evident fashion. When 

zinc moves to the cathode, it plates out silver. When zinc does this in an M-Ag2Mo2O7 cathode, 

silver remains close to the zinc that supposedly displaced it from the structure. When analyzing 

the middle-tier molybdates, Ag2Mo3O10 and T-Ag2Mo2O7, elemental migration is slightly more 

apparent. This movement is less obvious in the images of the Ag2Mo3O10 (the material that 

achieved the greatest capacity during the pure discharge) and is possibly more similar to the lack 

of shifting shown in the M-Ag2Mo2O7 figures, but there are a couple regions (Fig 12, D and E) 

in the T-Ag2Mo2O7 images where there is clear separation between the silver and groupings of 

molybdenum and zinc. The most obvious cases of segregation are visible in the Ag2MoO4 

images, where there are at least three regions (Fig 12, A, B, and C) in which the silver is clearly 

depleted, and the zinc and molybdenum are concentrated. 

 These noteworthy areas in the SEM figures, combined with the original morphologies of 

the pure substances, are likely the answers to the questions on performance. This is not the first 

instance where morphology has greatly enhanced or impaired a material’s ability to operate. 

Other studies on battery materials, like β-AgVO3, have found dramatic differences in recharging 

and discharging performances between different morphologies of the same material.1-2 Thus far, 

a nanowire morphology continues to beat an amorphous morphology in vanadium compounds 

and apparently the molybdenum compounds in this project. 

 



 
Figure 12: SEM images and elemental mappings of cathodes discharged to 0.8 V. Regions A-E 

represent spaces where there is a clear discrepancy between the concentration of silver and the 

concentration of molybdenum/zinc.14 

 

 Although the recharging abilities of these silver molybdates were given some attention 

prior to the acquisition of SEM images, they are continuously receiving further evaluation as the 

coating method progresses and understanding of the materials improves. Even though the project 

has come a long way, the current framework of our battery systems is not ideal for recharge data. 

First, a lithium anode is more optimal when trying to demonstrate recharge, but it is less practical 

for this project considering the primary use of zinc and the hazards that come with a highly 

reactive substance. Second, silver is not renowned for its ability to recharge. In fact, other studies 

have shown that, because of silver’s high affinity for electrons, it is less inclined to return them 



to the cathode. Nevertheless, it is still important to explore rechargeability. Achieving ways to 

improve it or simply knowing what these molybdates are capable of are critical aspects of the 

narrative being constructed around these materials. Recharge data is often referred to as “cycling 

data.” The battery discharges to a selected voltage (electrons/ions move to the cathode), and then 

it recharges to a selected voltage (electrons/ions return to the anode). The combination of a 

discharge and its following recharge is called a “cycle.” As a battery runs, it often loses capacity 

from one cycle to the next. A decent rechargeable battery can recover most of its capacity as it 

cycles (continues to recharge and discharge), but the best rechargeable batteries can cycle many 

times before it struggles to reach its initial capacity. 

 Keeping in mind previous electrochemical results and SEM images, the trend remained 

relatively similar, according to Figure 13. It was no surprise to find that the monoclinic silver 

molybdate demonstrated the best recharge data when the original wet-coating procedure was 

tested. The trimolybdate and triclinic materials ran almost identically with their capacities 

topping off around 200 mAh/g on their first discharge and recovering approximately 50% of the 

capacity. The monomolybdate cathode only appears superior because the electrolyte began to 

reduce during the discharge. To this date, Ag2MoO4 struggles to deliver beyond the recharge 

phase of its first cycle. 

   

  



 

Figure 13: Recharge cycling data of the four silver molybdate compounds operated at 50 mA/g. 

All cathodes were made from a wet-coating procedure (8:1:1; active material, carbon, and 

binder). They were discharged to 0.2 V and recharged to 1.4 V.  

 

Figure 14 and Figure 15 present cycling data obtained from cathodes prepared through a 

dry-mixing procedure that were only partially discharged to 0.8 V and recharged to 1.7 V. The 

Ag2MoO4 continued to fall short, whether it was fully or partially discharged (Fig 14, A and B). 

The discharge half of its cycles were not entirely messy, but the battery appeared to short on the 

recharge and fail to reach 1.7 V. The Ag2Mo3O10 cathode demonstrated impressive recovery 

percentages when it only discharged partially. The capacity of the first recharge recovers by 

about 60%, while recharges two through four appear to recover between 80-100% each (Fig 14, 

C). This level of success may be explained by the minimal elemental separation shown in the 

SEM images of the partially discharged Ag2Mo3O10 electrode (Fig 12). If the zinc and silver 

remain local following the discharge, then reversing the process may be less difficult. This 



argument is supported by the fewer cycles and low capacity recovery depicted in Figure 14, D, 

which shows the effect of reducing all the way past molybdenum. 

 

 

Figure 14: Recharge cycling data of (A) Ag2MoO4 cathode discharged to 0.8 V, (B) Ag2MoO4 

cathode discharged to 0.1 V, (C) Ag2Mo3O10 cathode discharged to 0.8 V, and (D) Ag2Mo3O10 

cathode discharged to 0.1 V. All cathodes were made from a dry mix (8:1:1; active material, 

carbon, and binder) pressed onto steel mesh. All were recharged to 1.7 V and operated at 50 

mA/g. 

 

 In Figure 15, monoclinic and triclinic showed promise when asked to perform one cycle 

in the dry mix, averaging a capacity recovery around 70% (Fig 15, A and C). Issues arose when 

multiple cycles were attempted. The capacity recoveries of the triclinic cathode were respectable, 

and three cycles were managed. However, there was a sizeable capacity difference between the 

first discharge and the two that followed (Fig 15, D). The standard front runner, monoclinic, 

shorted on both of its recharges (Fig 15, B). Considering the success this material has shown 

previously, these shortages are best viewed as mistrials, and the results are best held 



inconclusive. More recharge data will need to be gathered, and this type of coating will need to 

see more trials in the lab. 

 

 

Figure 15: Recharge cycling data of (A) M-Ag2Mo2O7 cathode operated at 50 mA/g through one 

cycle, (B) M-Ag2Mo2O7 cathode operated at 40 mA/g through (an attempted) three cycles, (C) 

T-Ag2Mo2O7 cathode operated at 50 mA/g through one cycle (D) T-Ag2Mo2O7 cathode operated 

at 40 mA/g through three cycles. All cathodes were made from a dry mix (8:1:1; active material, 

carbon, and binder) pressed onto steel mesh. All were discharged to 0.8 V and recharged to 1.7 V  

 

CONCLUSION  

 After successfully synthesizing and characterizing the four silver molybdate materials of 

interest, electrochemical testing provided answers as to which compound made the best battery. 

Enough data had been procured to establish a hierarchy for the battery candidates, and the order 

from least optimal to most optimal went Ag2MoO4 < T-Ag2Mo2O7 ~ Ag2Mo3O10 < M-Ag2O2O7. 

The pursuit for answers as to why this was the order began with a consideration of the pH and 

Ag:Mo ratios. The investigation would eventually lead to a look at the crystal sizes of the silver 



particles. Finally, SEM images would offer suggestions as to why the electrochemical data were 

falling in the aforementioned hierarchy. The top batteries, according to our research and the 

research of other groups, have an organized morphology and contained elemental packing. The 

data indicates that an orderly nanowire will run more efficiently than a blob of material, and it 

will discharge in a manner that can more readily reverse itself. This is not to say pH, Ag:Mo 

ratios, and crystal sizes are complete nonfactors, but the results are saying that a well-ordered 

morphology is fundamental in the success of these silver molybdates as batteries. 

 

FUTURE WORK 

Although the project has come a long way, there are still several ways to continue 

exploring these silver molybdate materials. The recharging capacities are still not fully 

understood, especially when the batteries are only partially reduced. More trials with the new 

cathode prepping procedure would be ideal as well. Argonne National Labs has already 

permitted more imaging with transmission electron microscopy (TEM), a technique even more 

advanced than SEM. Lastly, it was recently found that the silver monomolybdate, Ag2MoO4, 

may actually have two forms (referred to as alpha and beta). This came to light when a cathode 

of Ag2MoO4 made from the new dry-mix prepping procedure ran to a capacity of approximately 

297 mAh/g (Fig 16). This is the best this material has performed since the beginning of the 

project, and it would be valuable to know which of the forms can handle this level of capacity. 
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