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Chapter 1

Introduction

1.1 Abstract

Beyond the valence quarks’ spin contribution to the total spin of a proton, gluon and sea
quark contributions are becoming clear as well. For proton+proton collisions at a center of
mass energy of 510 GeV , neutral pion production is dominated by gluon-gluon and gluon-
quark scattering. An avenue to constrain the gluon polarization is the asymmetry, ALL,
in the production of neutral pions from collisions of longitudinally spin-polarized proton
beams. Our experiment was performed with the STAR detector at the Relativistic Heavy Ion
Collider (RHIC), unique for its ability to collide spin-polarized proton beams. The Endcap
Electromagnetic Calorimeter (EEMC) of the STAR detector with its pseudo-rapidity (η)
range between 1.09 and 2.00 and full azimuthal coverage measures energies of photons from
π0 decays. We consider the invariant mass of all photon pairs in the EEMC as we identify
π0 candidates. We will present the current status of the analysis of the π0 ALL as measured
by the EEMC at STAR in 2012 data with center-of-mass energy of 510 GeV .
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1.2 Overview

Figure 1.1: Structure of a proton [1]

In the Standard Model of particle physics, we know the individual constituents of
the proton, such as quarks with spin 1

2
and gluons with spin 1 in standard units. In a

simple proton model, two up quarks and one down quark consists a proton, which are
sufficient to explain the charge contribution of each constituent. However, as shown in
Figure 1.1, the partonic structure of the proton is more complicated, in a sense that the
specific spin contributions of gluons are hard to determine. In other words, total spin of a
proton is not solely governed by quarks. In addition to the complicity in structure, each
constituent has the orbital motion relative to others. All of the contribution factors add up
to a proton’s spin of 1

2
. This experimental analysis seeks to enhance our understanding of

the role of the proton’s constituents, specifically the gluons, in making up the spin of the
proton. Due to the incompetence of performing direct measurements of spin contributions
for each constituent type, we can analyze the phenomenons of products after colliding two
protons in order to understand the properties of individual parts that consists a proton. The
Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab (BNL) has performed
spin polarized collisions of proton+proton in order to probe the inner structure of proton.
The Solenoidal Tracker At RHIC (STAR) is one of two detectors that are being used for
investigating gluons’ spin contribution. SThe STAR detector is distinctive in that it has full
azimuthal coverage, which will be further discussed in later section.

4
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1.3 Physical Motivation

Figure 1.2: DSSV analysis based on RHIC data [1]
The C.L (Confidence Level) area spanned by each momentum fraction carried by a parton,
xbj, shows the uncertainty range. ∆g is the partonic gluon spin contribution aligned with

the proton’s spin. New DSSV fit shows significantly reduced uncertainty range at
0.05 < xbj < 1, yet 0.001 < xbj < 0.05 still has high uncertainty region. DSSV is a detailed
account of the first global analysis of polarized Parton Distribution Functions presented [2].

RHIC’s spin polarized p+ p collision data have been analyzed previously with 2006 data
with center of mass energy with 200 GeV by STAR collaboration [3] and PHENIX collabora-
tion [4]. These research papers provide the constrained gluons’ spin contributions about 25
percent of a proton’s total intrinsic spin for xbj > 0.002 (Figure 1.2). Valparaiso University
have been involved in 2006 data analysis [3], and provided results at specific π0 transverse
momentum (pT ) range, 5 < pT < 12GeV/c. In 2012, STAR collected a very large dataset
at higher p + p collision energy with developments in the detector, and the 2012 dataset
contains about 10 times the number of collision events. Historically, the DSSV fit, figure 1.2,
has been improved: blue data point (DSSV∗) with green uncertainty region had been shrunk
down to new fit with less uncertainty. For x-axis when momentum fraction carried by gluons
is between 0.05 and 1, it is clear non−zero spin contribution of gluons. Unlike to this, lower
momentum fraction carried by gluons (0.001 < ∆g < 0.05) is yet not sufficiently evaluated
to investigate the clearer spin contribution. From 2012 dataset with higher collision energy,
we expect to obtain results at lower momentum gluons (xbj < 0.05, y-axis of the figure).
Our data analysis is done for pseudo-rapidity (η) between 1.1 to 2.0 (intermediate pseudo-
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rapidity region) by the Endcap ElectroMagnetic Calorimeter (EEMC). This result can be
used to cross check with the analysis results from data collected by Barrel ElectroMagnetic
Calorimeter (BEMC) or Forward Meson Spectrometer (FMS). Our major goal is to extend
the 2006 analysis to the 2012 dataset and we hope that theorists will be able to produce fits
with reduced uncertainty at low xbj.

1.4 Theoretical Background

1.4.1 Proton Spin Structure

The proton’s spin in a realistic model of the proton can be written as the sum of four
spin contributers written as:

Sp+ =
1

2
∆Σ + ∆G+ Lq + LG =

1

2
(1.1)

In Equation 1.1, Sp+ denotes the total intrinsic spin of the proton. ∆Σ denotes the
polarization of quarks - both valence quarks and sea quarks1. This quarks’ spin term carries
coefficient of 1

2
since quarks are fermions. ∆G denotes the gluons’ spin contribution; and

Lq,G denotes the orbital angular momentum for each respective parton.
For this research, we will concentrate on constraining the ∆G, called gluons’ polarization

inside a proton. For a spin-polarized proton, parton’s polarization can be written as:

∆f(x,Q2) = f+(x,Q2)− f−(x,Q2) (1.2)

f(x,Q2) = f+(x,Q2) + f−(x,Q2) (1.3)

Equation 1.2 means preference of a parton at a given state, f(x,Q2), relative to the spin
of a proton which is expressed as the difference between f+ (polarization of partons along
the polarization of a proton) and f− (opposite partonic polarization relative to the proton’s
polarization) whereas the spin of unpolarized parton, equation 1.3, is expressed as sum of f+

and f−. x represents the fraction of the proton’s momentum carried by specific parton (also
known as Bjorken Parameter, xbj). Q

2 represents the momentum carried by the proton. For
any partons in a proton, total polarization can be derived by integrating over xbj. Applying
this to the gluon, ∆G represents the preference of gluons’ spin alignment relative to the
proton’s spin.

1Sea quarks are the virtual quarks that appear in first order of gluon’s interaction Feynman Diagram
between two quarks in general. The production of the sea quarks occurs in quark-antiquark pairs.

6



Tae Kim Physics Honor’s Research

1.4.2 Kinematics of p+p Helicity Oriented Collisions

First, in phenomenological aspect, the one-to-one collision of two partons can be expressed
using cross section of the collision and its relationship with the longitudinal double spin
asymmetry (ALL). The asymmetry is written as:

ALL =
dσ++ − dσ+−

dσ++ + dσ+−
=

∆dσ

dσ
(1.4)

This longitudinal double spin asymmetry includes the cross section (σ) differences de-
pending on the colliding protons’ spin structure. For our experiment, the spin differences are
in longitudinal orientation (helicity). For polarized proton + proton collisions, we are inter-
ested in a specific process, ~p~p → π0X, which was used for theoretical ALL calculation (the
vector sign above the p denotes that the proton is longitudinally polarized). The differences
were expressed using the QCD Factorization Theorem cross section analysis [5]:

∆dσ/dΩ = ∆dσ~p~p→ π0X/dΩ

=

∫
pmin
T

dpT
∑

ff ′ → iX

∫
dx1dx2dz∆fp(x1) × ∆f ′p(x2) × Dπ0

i (z) × ∆dσ
~f ~f ′ → iX

dΩ

(1.5)

Equation 1.5 shows the theoretical expression for polarized cross section at unit solid
angle for the proton pair (dΩ). The equation is integrated over all transverse momentum
(pT ) range, and summed over the partonic hard scattering processes (ff ′ → iX). f(x)
indicates the Parton Distribution Function (PDF) of a proton, which represents the initial
conditions of the collision and fragmentation function (Dπ0

i ) represents the final condition
of the collision. These initial and final conditions were mediated by the partonic cross

section (∆dσ
~f ~f ′ → iX) of the specific process. For unpolarized cross section (dσ), ∆ will be

removed from the previous equation (1.5). The kinematic processes of the p+p collisions
were dominated by scattering of quark+gluon (qg) and gluon+gluon (gg). Theoretical ALL
can be obtained by dividing unpolarized cross section from the polarized cross section.

ALL =

∫
pmin
T

dpT
∑

ff ′ → iX

∫
dx1dx2dz∆fp(x1) × ∆f ′p(x2) × Dπ0

i (z) × ∆dσ
~f ~f ′ → iX∫

pmin
T

dpT
∑

ff ′ → iX

∫
dx1dx2dz fp(x1) × f ′p(x2) × Dπ0

i (z) × dσff ′ → iX

(1.6)

With simplification, this equation is rewritten as

ALL ≈
∆f1(xbj, Q

2)

f1(xbj, Q2)
· ∆f2(xbj, Q

2)

f2(xbj, Q2)
αLL (1.7)
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Equation 1.7 shows the final simplified version of theoretically calculated double spin
asymmetry. α is called process-specific spin-correlation coefficient predicted by perturbative
Quantum Chromo-Dynamics (pQCD), which is defined as αLL = ∆dσff

′ → iX/dσff
′ → iX (in

other words, αLL represents partonic asymmetry). Each ∆f
f

represents the partonic spin
contribution, in other words, the likelihood of parton’s spin that is aligned with the proton’s
spin direction.

Figure 1.3: Proton quark spin asymmetry [6]

In Figure 1.3, Ap1 represents polarized partonic spin contribution based on analysis of
polarized deep inelastic lepton-hadron scattering experiment, and this quantity can be sub-
stituted by ∆f

f
from the previous ALL equation. CERN and SLAC had been involved in this

research in order to investigate Ap1 (proton), An1 (neutron). This A1 represents the quark
spin asymmetry, which clearly shows the spin contribution differences for a proton (p) and
a neutron (n).
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1.4.3 Longitudinal Double Spin Asymmetry (ALL)

Measuring of longitudinal double spin asymmetry (ALL) comes from the cross section
measurement of the collisions at specific helicity states. In this section, we will apply the
theoretical calculation to the experimental aspect. ALL can be written in terms of neutral
pion production asymmetry that can be measured by the experiment:

ALL =
σ++ − σ+−

σ++ + σ+−
=

1

PY PB
·
N++

L++
− N+−

L+−
− N−+

L−+
+ N−−

L−−
N++

L++
+ N+−

L+−
+ N−+

L−+
+ N−−

L−−

(1.8)

In Equation 1.8, we can calculate the ALL by spin-dependent neutral pion production.
Note that the helicity (longitudinal spin-orientation) is written as: ++,−+,+−,−− where
+ denotes the helicity direction of the proton is parallel to its momentum and − represents
the proton’s helicity is anti-parallel to its momentum direction. Nhelicity

2 is the number of
neutral pion (π0) produced at specific proton helicity collisions and Lhelicity

3 denotes the
luminosity of the collision events. Luminosity means the number of collision events per unit
area per unit time. Each PY and PB denotes the polarization correction factor of incident
proton beam (one beam as yellow(Y ) and another beam as blue(B)). For our experiment,
polarization factor was measured by polarimetry group, each polarization of the beam is
recorded fill by fill with information of time dependency 4.

ALL =
1

PY PB
· N++ +N−− −R3 (N+− +N−+)

N++ +N−− +R3 (N+− +N−+)
(1.9)

R3 =
L++ + L−−
L+− + L−+

(1.10)

For our analysis, we used Equation 1.9 with an assumption and approximations. Detailed
derivation of Equation 1.9 and 1.10 is included in Appendix 7.1.

2N++, N−+, N+−, N−−
3L++, L−+, L+−, L−−
4The specific information can be found in https://wiki.bnl.gov/rhicspin/Run 12 polarization
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1.4.4 π0 Detection and Reconstruction

Inaccessibility in direct detection of π0

Figure 1.4: π0 constituents

Neutral pion (π0) is a particle with a short lifetime of (8.52 ± 0.18) × 10−17 s with esti-
mated path length of 25.5nm. This feature constrains the direct measurement of π0. And
the rest mass of π0 equals to 134.9766 ± 0.0006MeV/c2. Since 98 % of π0 decays into two
photons, we measure the photons’ energies with their opening angle, in order to reconstruct
into the π0. The importance of π0 mass comes from the physical property that the particle’s
mass is invariant in all frame of reference.

Thu Nov 10 15:07:44 2016

htemp
Entries  156303

Mean   0.2927

RMS    0.1534

pi0.M

0 0.1 0.2 0.3 0.4 0.5 0.6
0

500

1000

1500

2000

2500

3000

3500

4000

htemp
Entries  156303

Mean   0.2927

RMS    0.1534

pi0.M {pi0.M>0&& pi0.M<0.6 && pi0.PT >5 && pi0.PT <12}

Figure 1.5: π0 mass distribution

Mγγ = (E1 + E2) ·

√
(1−

(
E1 − E2

E1 + E2

)2

sin
θ

2
(1.11)

Figure 1.5 is an example of a mass distribution plot. Invariant mass calculation was done
in order to generate the distribution. Since we cannot specifically identify which photon
came from which pion, we consider all combinations of two photons with their opening
angle. Equation 1.11 was used for mass distribution calculation. Mass distributions like
figure 1.5 include both “signal” and “background”. “Signal” is the real π0 that is produced
due to the proton+proton collisions and “background” includes the wrong combinations that
does not lie under the π0 mass region. In this equation, each E is the energy of a photon and
θ equals to the opening angle of two selected photons. From Figure 1.5, we can see the peak

10
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at around 135MeV/c2 where π0 invariant mass lies. Invariant mass is a characteristic of an
object that is the same in all frames of reference. Therefore, even knowing the properties
of produced photons from the decay, we can calculate invariant mass in order to determine
whether it is located within the reasonable boundary of known π0 mass.

11



Chapter 2

Experimental Method

2.1 Spin Polarized Collisions at RHIC

Figure 2.1: Relativistic Heavy Ion Collider (RHIC) schematic [7]

Figure 2.1 shows the Relativistic Heavy Ion Collider (RHIC) layout. In this section, we
highlight the “Siberian Snake”, beam indication, beam energy, beam polarization and collider
luminosity. RHIC’s accelerator complex enables the sustained polarized protons which is an
only circular collider with this unique capability in the world. A special structure, called
“Siberian Snake”, prevents protons from depolarizing as they pass through the accelerator.
“Siberian Snake” helps nearly 60 % of protons to be polarized. The two polarized beams
circulate around the ring in opposite directions and are called the “yellow” and “blue” beams.
For 2012 data, the center of mass energy was

√
s = 510GeV which is 255 GeV for each yellow

or blue beam.

12
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2.2 STAR Detector

2.2.1 Detector Geometry

Figure 2.2: Schematic of the STAR detector

Figure 2.2 shows the STAR detector components. The STAR detector has full azimuthal
coverage. Figure 2.2 shows two important structures of the STAR detector, the BEMC and
EEMC. The Forward Meson Spectrometer (FMS), not labeled in Figure 2.2, is located near
the beamline. Pseudo-rapidity (η) is a spatial coordinate describing the angle of a particle
relative to the beam axis. For our analysis we analyze pi0s detected by the EEMC, which
occupies a specific pseudo-rapidity region (1.1 < η < 2.0).

13
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2.2.2 The Endcap Electro-Magnetic Calorimeter (EEMC)

Figure 2.3: EEMC tower structure

Figure 2.3 is the EEMC tower structure. The left half-circular view shows the subdivi-
sion of EEMC into 720 towers. The longitudinal segmentation of the tower is presented on
right side of the plot. Each tower consists of 23 layers of lead/stainless steel absorber and
24 layers of plastic scintillator. Each tower has pre-shower, post-shower, and shower maxi-
mum detector layers which are read out separately from the main scintillators. As photon
or charged particle travels through the calorimeter, it leaves energy blobs at each layer. By
adding the deposits, we can identify the photon energy. Among the tower layers, there is
a two-layered segment called Shower Maximum Detector (SMD) that precisely locates the
photon, electron or positron.

Shower-maximum detector (Figure 2.4) is a useful segment that can precisely measure
the position of energy deposits from photons and help distinguish photon from electrons
and other charged particles. Each U and V SMD plane contains extruded polystyrene-based
scintillator strips and adjacent U and V sectors are placed in full azimuthal coverage. U-
plane and V-plane have specific diagonal fiber arrangements in order to figure out the photon
location.

14
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Figure 2.4: Shower-Maximum Detector (SMD)

2.2.3 EEMC Trigger

We used Endcap High Tower trigger (EHT0) for the analysis and trigger threshold energy
equals to ET = 5.7GeV . ET is the transverse energy that the transverse represents direction
perpendicular to the proton beam-line. The trigger records events if the transverse energy
recorded in one tower is more than 5.7 GeV . Compared to other types of particles, photons
tend to deposit most of their energy in a small number of towers, so this is a useful trigger
geometry for identifying events with photons. This triggering process helps to select the
potentially interesting events with reduced data file sizes since for many p+ p collisions, we
only have limited capacity to record a certain number to disk for later analysis.

2.3 Analysis Process

Figure 2.5: Analysis process of π0ALL analysis

The analysis start from the raw data files called MuDST which contains all information
about the collision events without any applied calibration. Based on MuDST files, we gen-
erate data accessible files called “Tree”. Tree making constrains the STAR detector region

15
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to be Endcap. Data Trees consists of Part 1, 2 and 3; Part 1 tree includes calibrated events,
tower and SMD energies, and trigger information. The part 2 tree includes identified photon
cluster at SMD strips and hit information. This part 2 tree does not have photons. It has
clusters of SMD strips that have passed an algorithm that I will describe later. The part 3
tree contains photon and π0 information, without any trigger cut yet having been applied,
and without any separation into different spin states. At this point position information
from the SMD strips has been combined with energy from the towers into photons, and then
into π0s. Using the part 3 photon data, π0 gets reconstructed for all photon combinations
since it is impossibly to know which photons, in a multi-photon event, come from a partic-
ular π0 decay. Based on data trees, data histogram is produced with separated spin state
as well as specific transverse momentum (pT ) cut. pT represents the energy of the particle
(higher pT means that the particle has higher energy). Transverse momentum (pT ) is often
used in collider physics, indicating the momentum of particle in a perpendicular direction
to the longitudinal (beam-line) direction. In this process, we specify the events recorded by
particular trigger, EHT0. Parallel to the data machinery, as shown in Figure 2.5, Monte
Carlo (MC) simulated dataset follows the similar process up to tree making stage. This
tree carries the particle ID so that we can extract the real π0 from the mass distribution.
Since the mass distribution was made from all photon combinations, there are wrong photon
combinations that will be considered as one of the background factors. These MC trees are
the basic ingredients to create template fits with adjustable fit parameters, which will be
discussed in later section. The templates are separated in specific pT range. By fitting and
comparing templates to the data, we can determine the number of π0 at specific spin state
at pT range. Identified π0 counts are used for further ALL calculation. For this research, I
did not progress the unfolding and transverse asymmetry (AN) calculation.

2.3.1 Software Used for the Analysis

The major software for the analysis is ROOT developed by Conseil Européen pour la
Recherche Nucléaire (CERN) [8]. It is a modular scientific software framework to deal with
big data processing, statistical analysis, visualization and storage. STAR collaboration uses
ROOT version 5 with different release versions1 are mainly written in C++. The existing
analysis infrastructure in StRoot library at STAR collaboration website2.

2.3.2 Photon Reconstruction Process

We begin reconstructing photons by building clusters of SMD strips. The Tukey-Smoother
– IU (TSIU) SMD clustering algorithm is applied to each SMD sector and layer separately.
This algorithm begins by applying the Tukey-Smoother for ten iterations, and then allowing
all strips with energy above 2 MeV to serve as seed strips. This algorithm begins a hybrid
clustering process proposed by former researcher, Steve Gliske [9]. The 3 strips on either
side of the seed strip are assumed part of a cluster, total 7 strips will be identified as a set.

1All releases can be found at https://root.cern.ch/releases
2https://drupal.star.bnl.gov/STAR/comp/
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The cluster must satisfy the following conditions:
1. The number of non-zero energy strips (before smoothing) is greater than 4
2. The total smoothed energy summed over all the strips is at least 3 MeV , and this is

assigned to be the cluster energy
3. The energy after smoothing decreases monotonically from the seed strip. The cluster

position is determined from the smoothed energy-weighted mean positions of the strips in
the cluster.

After this process, identified clusters for each SMD layer are combined to make “points”
with η and φ position. The tower records energy around the “point” and forms “hit” which
is a combination of η−φ and energy. This hit is considered as a incident particle candidates
and their momentum is computed based on the position and energy.
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Chapter 3

π0 Quality Assurance

3.1 Photon Clustering Differences

3.1.1 Change in ROOT Release Version
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Figure 3.1: Cluster differences depending on the ROOT version

The photon clustering process was changed due to ROOT version transition from 5.34.09
to 5.34.30. During the process of tree making, we cross-checked with our π0 distribution peak
to Yaping Wang who works on the similar analysis. We observed differences in generated
π0 distribution plot depending on STAR software version. After checking tree samples using
different STAR libraries the major differences in π0 counts originated from ROOT release
version that plays major role in compiling codes. Histogram making code in ROOT version
includes smoothing algorithm that converts raw data into analyzable peak with reduced
statistical fluctuations. Internally, this algorithm should have included two iterations. One
smoothing pass whose results are fed back into the algorithm for a second pass. Externally,
we can then choose to call the algorithm multiple times. The result of each external iteration
becomes the input for the next. In 2014 the ROOT developers realized that their implemen-
tation of the algorithm had only one internal iteration, and fixed the algorithm to include
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both internal iterations. The 2006 STAR analysis, completed in early 2014, used the “old”
ROOT version with one internal iteration. More recent STAR analysis inadvertently, based
naively on “newer” versions of ROOT, inadvertently used two internal iterations.

More information can be found in https://sft.its.cern.ch/jira/browse/ROOT-6906

To study the issue, we can change the number of internal iterations by changing the
version of ROOT that we use. We can change the number of external iterations in our own
STAR code. Clustering differences is shown in Figure 3.1a and Figure 3.1b. From the 2006
data analysis note [9], internal iteration was set as 10 (by Steve Gliske). The major effect
due to the ROOT debug is the number of cluster identified as a photon hit. Two exact same
data signals on SMD strips passed through the smoothing process and verifies 2 clusters
from each U and V strip. However, the new version of ROOT does not identify the clusters
that satisfy the “requirements to be considered as a cluster.” Therefore, the number of re-
constructed photons and π0s will be different (shown in following figures).
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Figure 3.2: π0 mass distribution differences due to smoothing

Figure 3.2 shows three different comparisons of π0 mass spectrum. For this comparison,
we did not apply any trigger cut, spin separation or pT cut. Each figure caption denotes the
number of smoothing done on raw data sample. 2 × 5 means that each number in figures
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above represents [Number of calling SmoothArray by ROOT]×[Iteration in SmoothArray].
In figure captions of Figure 3.2, we’ll use labels like 2× 5. The “2” refers to the number of
internal iterations, the “5” refers to the number of external iterations. As we will present
the change in algorithm is not as simple as just a number of iterations, but this labeling
provides one way of exploring the issue.

In Figure 3.2, there are significant difference in statistics due to the change of ROOT
debug. Between Figure 3.2a and Figure 3.2c, one internal iteration of smoothing gives two
times more entries. This difference originates from the previous clustering of the photon. As
shown in Figure 3.1, ROOT version before bug-fix was able to identify up to four photons
from SMD. However, new ROOT version does not have any identified clusters on SMD V.
These number of photon differences causes significant deviations in π0 mass distribution
plot. In addition to this statistical aspect, the shape of left shoulder for Figure 3.2a becomes
smoother after the debug, as shown in Figure 3.2c. As an intermediate cross-check, Figure
3.2b (2×5) was generated to check the difference from 1×10 case. With naive assumptions,
the equal total iteration of smoothing was supposed to give similar results; however, 2 × 5
version is close to 2× 10. The peak itself seems to be sharper for more iterations with lower
background.
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3.1.2 Clustering Iteration Comparison

Comparison of 1× 10 and 2× 5
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Figure 3.3 shows the shape of π0 mass distribution depending on number of iterations in
smoothing algorithm. We compared mass distribution at different pT bins. After applying
the EHT0 trigger, the total entries went down to 15 % differences in statistics. To check
the shape between two mass distribution plots, we normalized the graph so that the area
of distribution matches to 1. For Figure 3.3a, lower pT bin has high statistical fluctuation.
For higher pT bins, there are no significant differences. Comparing this trigger applied dis-
tribution (Figure 3.4) and without any trigger selection (Figure 3.2), once we specify the
EHT0 trigger, the difference in statistics decrease and we cannot clearly distinguish the dis-
crepancies in shape of two distributions. We expect that the variations were filtered after
applying the trigger cuts. Also, different from the background differences in Figure 3.2, once
we require the trigger cut, therefore, significant background deviation gets eliminated.

Comparison of 1× 10 and 2× 10
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Figure 3.6: Normalized mass spectrum 5GeV/c < pT < 12GeV/c

In Figure 3.6, we compared the normalized peak results depending on internal cluster-
ing iteration. As mentioned in previous section, the left shoulder for one internal iteration
shows discrepancy at intermediate and high pT bins. In low pT region (Figure 3.5a), it is
hard to observe the clear differences due to low statistics. We conclude that the internal
iteration affects the lower invariant mass section, yet we do not fully understand the corre-
lation between internal and external iteration of this smoothing algorithm. From these two
comparisons (Figure 3.4 and 3.5), we conclude that the internal and external iterations are
more complicated than our assumption. Also the bug-fix of internal smoothing repetition
does not significantly deform the mass distribution, but we do see some differences in lower
mass part. We believe that the it is okay to use the bug-fixed ROOT version, which we
expect to obtain clearer π0 signal peaks for other triggers.

Comparison of 1× 10 and 2× 10

As a consistency check, we also compared the mass distribution shape of 2 × 5 and
2×10. Figure 3.7 compares the normalized mass distribution plots depending on the external
iteration. As shown in the figure, there are noticeable deviations from any of pT range plots.
For our pT range of interest, both peaks overlap with small statistical fluctuation. Therefore,
unlike to our hypothesis, the number of internal iteration affect the clustering identification
more than the external iteration (a fine nob that users may change easily). Since the method
of 2× 5 is not different from other iteration methods, we conclude that 5 external iteration
can be used for further data analysis.
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Figure 3.7: Normalized π0 mass plot at specific transverse momentum range (pT )
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Chapter 4

Monte Carlo Simulation Studies

4.1 PYTHIA

PYTHIA is a computer simulation program for particle collisions at very high energies in
particle accelerators. This simulates partonic collisions and produced particles that interact
with the detector components. The simulated results are saved in a similar formation of
unrefined data files. The files have structure named MuDST that can be refined into tree
that goes through similar process as data tree. In addition to this, there is a Monte Carlo
special tree that carries the particle identification. In general, the simulation results are
segregated under ejected partonic pT ranges. For 2011 Monte Carlo simulation, there are
partonic bins of 2-3, 3-4, 4-5, 5-7, 7-9, 9-11, 11-15, 15-20, 20-25, 25-35, 35-45, 45-55, 55-65,
65-75, and 75-infinity (GeV/c) with different cross sections and number of collision events.
Therefore, segregated partonic pT bins have to be stitched together with weighting factor
which is correlated to the cross section and collision numbers [10].

4.2 Fit Template

Template functions are fit from simulated collision events. Specifically, a signal template
and two background templates are used. Monte Carlo simulated results are dealt as data
analysis. Monte Carlo Tree contains reconstructed photon and π0 events with specified par-
ticle identification which let us extract real pion mass peak since, for simulated events, we
know specifically which photons come from which pi0 decays, and where photons interact
in the detector. With the mass distribution peak, we apply fit in order to make template
fit [See Appendix 7.3 for 2006 templates]. Signal fit is the actual π0 signal where the recon-
structed photons and π0 match well to the real π0s and photons, and conversion background
indicates that the two reconstructed “photons” that formed the π0 candidate but they are
actually two pair-produced leptons from a photon that converted in material upstream of
the EEMC [3]. The “other” background includes combinatorial background (from all photon
pair invariant mass calculation), as well as backgrounds due to other reconstruction issues.

There was previous analysis of 2006 data had a simulated Monte Carlo events that were
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applied to the data in order to extract the background. However, the energy of 2006 pro-
ton+proton collision events was 200 GeV , which is deviated from 2012 data, 510 GeV . We
decided to use 2011 Monte Carlo simulation used for jet analysis (p + p → jet + X). For
the first step, we neglected the weighting factors [10] to check the mass distribution for in-
dividual reconstructed π0 pT range so that we can assure quality of the template.
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Figure 4.1: Reconstructed Monte Carlo data at specific transverse momentum range (pT )
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Figure 4.1 shows the collection on 2011 template without specific trigger selection. There-
fore, we expect number of entries to be lower than what is shown in the figure and we do
not insist that the 2011 Monte Carlo contains enough pion counts at EEMC region. In
addition to the low entry issue, we are not able to observe the clear π0 mass peak near
135 MeV/c2 as shown in 3.2b. In addition to indistinguishable pion peak, each pT bin con-
tains low entries to create sufficient template. As a result, there are not sufficient events
of π0 so we are not able to construct the template that can be compared to the real 2012 data.

In order to observe the problem, we extracted the plot from specific pT between 7 GeV/c
and 8 GeV/c, in following figure 4.2b. This particular plot shows the identified pion mass
distribution that can be used for the fit that can create the template fit of π0 signal.

(a) 2006 Template
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Figure 4.2: Comparison of template at 7GeV/c < pT < 8GeV/c
This plot is generated during process of making template. Template making applies the
particle ID under the mass distribution so that we can segregate π0 as shown in figure
above. Also, the weighting factor is applied in order to stitch different partonic pT results.

According to the 2006 template figure 4.2a, there is an obvious π0 mass peak with suf-
ficient entries (8709 entries) to create the template fit. However, 2011 template figure 4.2b
has neither obvious shape nor enough statistics (114 entries).

Due to the adequacy issue of 2011 simulated events, for following results, we will use
2006 templates to observe whether 2006 200 GeV template is reasonably applicable or not.
As a substitution of template method, we make crude fit using simple Gaussian curve with
exponential background curve (for the fitting, we used IGOR pro software). Based on fits,
we performed sample calculation of ALL for 2012 dataset.
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Chapter 5

Results

5.1 Fitting Results

Dataset collected by RHIC has specific divided sets, specifically, accelerator gets filled
with protons that moves along the path and these proton collections are called “fill”. After
8 hours of proton collisions, the “fill” is removed from the accelerator and replaced with the
new “fill”. And this “fill” gets divided into 10-16 “runs” which is a recording for 2 million
events. These sub-division processes let us enhance the data efficiency.

Currently, we have 497 “runs” saved on High Performance Storage System (HPSS) at
RHIC. HPSS is software that manages large sizes of data on robotic tape libraries [2012
data trees are saved on /home/tkim1/Run12Tree/]. Due to the large number of runs, we
decided to subdivide into multiple groups. We will provide results at individual run, one fill,
and multiple fills with similar relative luminosity. This may lead us to the comparison from
smaller dataset to larger data.

2006 templates shown in Figures, 7.1, 7.2 and 7.3, are used for 2006 data analysis. The
template fitting code finds the best fit result that is a linear combination of three templates:
signal, conversion background and other background. Reduced chi-square check is done to
check the validity of the fit and the energy fraction (the location of peak ratio between data
mass distribution and Monte-Carlo mass distribution). From the fit, we use both histogram
and fit-function information to determine the number of π0. Since the simulated collisions
had center of mass energy of 200 GeV , results are not adequate or complete. Therefore, we
decide to apply simple fit to figure out number of π0.

28



Tae Kim Physics Honor’s Research

5.1.1 Single Run Fit with 2006 Template
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Figure 5.1: Mass plot fitting at specific transverse momentum range (pT )

Figure 5.1 shows the fit results for a single run with run ID of 13081004. Each figure repre-
sents template fits at specific transverse momentum range. From this fitting process, the fit-
ting was done under our interest region (0GeV/c2 < Mγγ < 0.3GeV/c2), yet, the number of
π0 was measured within the constrained mass range (0.1GeV/c2 < Mγγ < 0.2GeV/c2, in Fig-
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ure 5.1, the region is shown as gray area). In the fit plot, residual is shown to indicate the de-
viation between template sum fit (green line) and the data points (black dots). We are able to
observe constant appearing of residual at left shoulder (0.08GeV/c2 < Mγγ < 0.12GeV/c2),
shown in figure 5.1b, 5.1c and 5.1d. This fitting was done without a separation of protons’
spin orientation. For all pT , we are not able to see any clear background contributions which
lead us to conclude that either one run does not have enough statistics to identify clear
separation of backgrounds, or 2006 template is not applicable due to the collision energy
differences.

5.1.2 Multiple Runs Fit with 2006 Template

Our major for the fitting is not only see the π0 signal under our interest region but also to
identify clearer background contributions. Following figure shows the previous fitting results
using 2006 data with 2006 template.

Figure 5.2: 7GeV/c < pT < 8GeV/c fit result from 2006 data analysis [3]

For this section, we will investigate the validity of 2006 templates applied to large statis-
tics 2012 data. We used 228 runs in order to compare with single run fit case, or investigate
different helicity states of colliding protons.
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Figure 5.3: 7GeV/c < pT < 8GeV/c Comparison
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Figure 5.3 is the fitting comparison that may provide the evidence of differences between
2012 and 2006 data without any helicity separation. First, we focus on whether the claim
that we made was valid. In the previous section, we questioned that either one run does not
have enough statistics to identify clear separation of backgrounds, or 2006 template is not
applicable due to the collision energy differences. As comparing single run and multiple runs,
there are similar trends which are sharp left respect to the signal region and lower background
at higher Mγγ. These similarities are deviated from what we obtained from the 2006 data
fitting results. The major difference between 2006 and 2012 is the statistical aspect. As
shown in the figure 5.2 and 5.3b, peak point under the mass distribution for 2012 data is
nearly 10 times bigger, and considering 228 runs are about 45 % of total 2012 runs, we expect
to find more π0s that lead us to reduce the statistical uncertainty. In addition, 2012 dataset
has lower background than 2006 data. As shown in figure 5.2, right side of the signal region
has larger background contribution (5200 counts maximum and 1000 counts background
under π0 mass distribution). For 2012 data, there are near 52000 counts at maximum point
and about 5000 counts of background which has significantly less background fraction.
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5.1.3 One Fill Analysis

(a) 5GeV/c < pT < 6GeV/c (b) 6GeV/c < pT < 7GeV/c

(c) 7GeV/c < pT < 8GeV/c (d) 8GeV/c < pT < 9GeV/c

(e) 9GeV/c < pT < 10GeV/c (f) 10GeV/c < pT < 12GeV/c

Figure 5.4: One “Fill” mass plot fitting at specific helicity state (++)

Figure 5.4 shows naive fit results using program named IGOR1 for one specific “fill”. The
“fill” ID was 16597 which includes run number 13081003, 13081004, 13081005, 13081006 and
13081007. The fit function was Gaussian π0 signal with exponential background. The x-axis
domain was set from 0.0975 GeV/c2 to 0.3075 GeV/c2. In addition to this ++ spin state,
same fitting was done for other spin states. Based on number of π0 under the Gaussian
distribution, we calculate ALL for each pT bin (the result ALL is shown in later section).

1More information about IGOR pro can be found in http://www.wavemetrics.com/products/igorpro/igorpro.htm
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5.2 ALL Results
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Figure 5.5: Single run result of ALL

Figure 5.5 shows ALL result from the single run, 13081004. The π0 signal is extracted
using the 2006 Monte Carlo template. The result is calculated using equation 1.9 for specific
pT range. As explained in 2006 and 2012 data mass distribution, 2012 data has less back-
ground than 2006 data. Therefore, we expect 2006 Monte Carlo cannot be properly applied
to the 2012 data. Also, ALL results are not confident since we still use 200 GeV Monte Carlo
simulated template with wrong smoothing version. The asymmetry values are significantly
higher than previously published paper [3], as well as lower statistics, a single run out of
total 497 runs in 2012 data.

pT bin
++ helicity +− helicity −+ helicity −− helicity
π0 counts error π0 counts error π0 counts error π0 counts error

5− 6 GeV/c 278.99 16.70 226.22 15.04 386.25 19.65 298.11 17.27
6− 7 GeV/c 1239.71 35.21 1328.14 36.44 1291.46 35.94 1228.33 35.05
7− 8 GeV/c 2839.65 53.29 2437.48 49.37 2407.37 49.06 2998.32 54.76
8− 9 GeV/c 2875.64 53.62 2495.58 49.96 2633.61 51.32 3357.78 57.95
9− 10 GeV/c 2819.08 53.09 2204.92 46.96 2812.07 53.03 2833.25 53.23
10− 12 GeV/c 2684.92 51.82 2071.55 45.51 1871.28 43.26 2284.32 47.79

Table 5.1: 2012 single fill result
Each ‘π0 counts’ column is identified from figure 5.4. Specifically, we integrate Gaussian

peak, based on figure 5.4 fitting results, over all Mγγ in order to extract the number of π0

and the error values are calculated based on Poisson statistics. σ =
√
π0 Counts

Table 5.1 is the result from the naive fit results shown in figure 5.4. We used equation 1.9
with relative luminosity value of R = 1.075097, polarization of blue beam of PB = 0.529721
and polarization of yellow beam of PY = 0.583791. The error of individual constants are
not accounted for calculating ALL error using error propagation formula. Even though error
contributions of relative luminosity (R) and polarization (P ), we will modify the final ALL
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error formula. Following figure 5.6 is the ALL for one fill. Comparing this to the one run
ALL (figure 5.5), we observe similar shapes after pT = 7 GeV/c. However, ALL before the
pT is significantly different.
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Figure 5.6: Single fill result of ALL

Also, we still are under debate, yet not our priority, over the way of segregating data
runs. As shown in two cases study of single run and single fill, overall statistical uncertainty
is still relatively high due to the low number of π0. These results are the preliminary sample
check in order to verify whether the transition of adapting dataset from 2006 to 2012 works
without problems, and single fill analysis in order to probe naive statistical check. The
templates are not valid due to the energy difference, the simulated detector differences and
significantly the shape of data mass distribution. Frankly, 2012 mass distribution creates low
background with clearer π0 peak; however, fill-by-fill analysis will not be a sufficient dataset
that can reduce the statistical uncertainty [9] [11].
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Chapter 6

Current Status and Future Work

6.1 Work Done

My work started from learning the basic theoretical background of the STAR experiment.
During this process, I was able to expose myself to learn the flow of the analysis, and
how codes are tied together. The basic code infrastructure was constructed for 2006 data
analysis; however, the code does not work for 2012 analysis due to STAR software updates
and changes. This needs higher trigger energy cut as well as changing in trigger to high
tower trigger (EHT0). Thus, we changed the codes so that they can be applied to the 2012
data. During this tree making process, we recognized the ROOT version updates that causes
significant deduction of identified number of π0. We compared the iteration dependency and
the clustering, with using newer ROOT version. In addition, we debugged and evolved codes
such as data accessible tree making code, tree based histogram maker, Monte Carlo template
fit maker, data fitter, and ALL calculation code. Specifically, in asymmetry calculation, 2006
analysis codes had implemented ALL calculation of following equation [9],

ALL =
1

PY · PB

(
N++ −N+− −N−+ +N−−
N++ +N+− +N−+ +N−−

− L++ − L+− − L−+ + L−−
L++ + L+− + L−+ + L−−

)
(6.1)

Equation 6.1 is based on approximation derived from equation 1.8, which we do not
fully understand the intermediate derivation. However, for other STAR collaborators, equa-
tion 6.1 was commonly used, so we developed new ALL calculating codes to cross-check for
consistency. The results were close to each other and we decided to use STAR version tem-
porarily (equation 6.1) since the values of relative luminosity are accessible. We obtained
relative luminosity and polarization values from one of the collaborators, Zilong Chang. As
shown in previous sections, we analyzed one run (out of 497 runs in 2012 data) for a sample
calculation. These code updates for 2012 data were done for most of data analysis pro-
cess yet there are several bugs in codes for Monte Carlo template maker. The tree making
codes for Monte Carlo were debugged with small unidentified problems, and we are working
on this. The process has been updated and presented to the VU-ANL STAR collaboration
group. Also, the analysis was presented at the Division of Nuclear Physics (DNP) conference.
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After the basic software bugfix, 2012 data tree making process of 497 runs was done
and trees are stored on HPSS. However, we focused on the software consolidation before
making trees as well as fixing Monte Carlo (MC) tree making process so that the code can
be applied to the 2011 Monte Carlo simulation. Then, from the MC tree, we made a sample
template in order to check the validity of 2011 MC simulation on 2012 data. We applied
how to stitch generated MC trees using weights for separately simulated partonic pT collision
events. As a conclusion of current MC simulation, we believe that there is not a sufficient
collision events that can provide enough π0 under mass distribution peak that can be used
to generate template fit for signal and backgrounds.

6.2 Future Work

In the process of the analysis, we use relative luminosity values from other collaborator
without firm grasp, however, we will confirm the method of getting relative luminosity num-
bers from different sources with different values1. Once we have converged idea of process
data analysis, we will proceed the analysis explained in 2.3 (after tree making). We have to
decide the data segregation since each fill contains different number of collision events that
will give distinguishable relative luminosity. There are options to apply fitting per run, per
fill, or the whole dataset. For 2006 dataset, whole dataset was used with knowledge of raw
luminosity. “Good runs” lists will be evaluated with clear collision events and be determined
whether we use one whole 2012 data, per specific timeline, fill2 or run-by-run. In an aspect
of Monte Carlo simulation, we will investigate more about the 2011 sample. If we conclude
that 2011 is not adequate for our 2012 data, this will be replaced by our own MC simulation.

1There are three contemporary relative luminosity values addressed by STAR collaborators: Zilong Chang,
Christopher Dilks, and https://www.star.bnl.gov/protected/common/triggerPages.html

2Bucket or proton bunch that fills RHIC
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Appendix

7.1 Derivation of the Relative Luminosity

ALL =
1

PY PB
·
N++

L++
− N+−

L+−
− N−+

L−+
+ N−−

L−−
N++

L++
+ N+−

L+−
+ N−+

L−+
+ N−−

L−−

(7.1)

From Equation 7.1, each cross section terms can be re-written by factoring out symmetric
and anti-symmetric collisions respectively under assumption that each symmetric and anti-
symmetric collision has equal/similar luminosities (L++ ' L−− and L+− ' L−+). Given
these conditions, the produced π0s will be similar/equal for symmetric or anti-symmetric
collisions (N++ ' N−− and N+− ' N−+). Therefore, following equation satisfies,

N++

L++

+
N−−
L−−

' N++ +N−−
L++ + L−−

(7.2)

Then, it provides following equation,

ALL =
1

PY PB
·
N++ +N−− − L+++L−−

L+−+L−+
(N+− +N−+)

N++ +N−− + L+++L−−
L+−+L−+

(N+− +N−+)
(7.3)

Equation 7.3, often written as [11]

ALL =
1

PY PB
· N++ +N−− −R3 (N+− +N−+)

N++ +N−− +R3 (N+− +N−+)
(7.4)

where

R3 =
L++ + L−−
L+− + L−+

(7.5)
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7.2 Run 12 Beam Information

7.2.1 Polarization Information

[CNI Polarimetry Group1]
STAR group tracks the polarization of colliding protons at each “fill” and the values are

saved individually run by run in

/star/u/ tkim1/ offline/ paper/ psn0583/ 2006EEMCpi0paper/ CrossSectionLongAsym/
lumipol backup/ Pol

7.2.2 Relative Luminosity

We use relative luminosity values provided by one of STAR collaborators, Zilong Chang, and
they are saved individually run by run in

/star/u/ tkim1/ offline/ paper/ psn0583/ 2006EEMCpi0paper/ CrossSectionLongAsym/
lumipol backup/ Lumi

7.3 2006 Monte Carlo Template

Following templates are used for 2006 data analysis with 200 GeV simulated collisions.
Figure 4.1, 4.2 and 4.3 show the normalized template fits that will be applied to the data in
order to determine the number of π0. Each template is divided depending on pT bins and
the template fitting code performs linear combination of template fits at specific pT bin. The
templates are used to compare with the data plot, for example, the location of π0 mass peak
to set signal fraction and the number of π0s.

1https://wiki.bnl.gov/rhicspin/Run 12 polarization
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Figure 7.1: Signal Fit
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Figure 7.2: Conversion Background
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Figure 7.3: Other Background
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7.4 2012 One Fill Fitting

7.4.1 Helicity +−

(a) 5GeV/c < pT < 6GeV/c (b) 6GeV/c < pT < 7GeV/c

(c) 7GeV/c < pT < 8GeV/c (d) 8GeV/c < pT < 9GeV/c

(e) 9GeV/c < pT < 10GeV/c (f) 10GeV/c < pT < 12GeV/c

Figure 7.4: One “Fill” mass plot fitting at specific helicity state (+−)
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7.4.2 Helicity −+

(a) 5GeV/c < pT < 6GeV/c (b) 6GeV/c < pT < 7GeV/c

(c) 7GeV/c < pT < 8GeV/c (d) 8GeV/c < pT < 9GeV/c

(e) 9GeV/c < pT < 10GeV/c (f) 10GeV/c < pT < 12GeV/c

Figure 7.5: One “Fill” mass plot fitting at specific helicity state (−+)
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7.4.3 Helicity −−

(a) 5GeV/c < pT < 6GeV/c (b) 6GeV/c < pT < 7GeV/c

(c) 7GeV/c < pT < 8GeV/c (d) 8GeV/c < pT < 9GeV/c

(e) 9GeV/c < pT < 10GeV/c (f) 10GeV/c < pT < 12GeV/c

Figure 7.6: One “Fill” mass plot fitting at specific helicity state (−−)
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