The Sensitivity of Endpoint Forces Produced by the Extrinsic Muscles of the Thumb to Posture

Document Type


Publication Date



This study utilizes a biomechanical model of the thumb to estimate the force produced at the thumb-tip by each of the four extrinsic muscles. We used the principle of virtual work to relate joint torques produced by a given muscle force to the resulting endpoint force and compared the results to two separate cadaveric studies. When we calculated thumb-tip forces using the muscle forces and thumb postures described in the experimental studies, we observed large errors. When relatively small deviations from experimentally reported thumb joint angles were allowed, errors in force direction decreased substantially. For example, when thumb posture was constrained to fall within +15 degrees of reported joint angles, simulated force directions fell within experimental variability in the proximal-palmar plane for all four muscles. Increasing the solution space from +1 degrees to an unbounded space produced a sigmoidal decrease in error in force direction. Changes in thumb posture remained consistent with a lateral pinch posture, and were generally consistent with each muscle's function. Altering thumb posture alters both the components of the Jacobian and muscle moment arms in a nonlinear fashion, yielding a nonlinear change in thumb-tip force relative to muscle force. These results explain experimental data that suggest endpoint force is a nonlinear function of muscle force for the thumb, support the continued use of methods that implement linear transformations between muscle force and thumb-tip force for a specific posture, and suggest the feasibility of accurate prediction of lateral pinch force in situations where joint angles can be measured accurately. Published by Elsevier Ltd.