

Group Cognition in Problem Solving Dialogues: Analyzing differences between voice and computer transcripts

Melissa Butts, Daniel Leighty, Christine Warner

Valparaiso University - IN

ABSTRACT

This project shadows the work of student groups in Math 110, a quantitative literacy class, engaged in exploratory learning excercises. An instructor monitors these groups by both walking around the room and observing group conversation at another computer. Our goal is to put this exercise online, and as a result leave the entire monitoring process up to the computer, assuming the role that the instructor traditionally assumes.

Using annotation techniques to decipher meaning in dialogue of students working in groups for a Math 110, we try to see how students collaborate to solve problems together. "Bits of realization", conversation, and problem solving tags are sorted out and gathered to identify the main points that are expressed during the problem solving of the two-person game, Poison. Expanding upon previous research done by other students, we are able to add bits of realization that students encounter in their work.

Our first effort is to explore the differences between voice recorded dialogue and computer-mediated chat dialogue.

ABOUT

Math 110: Quantitative Problem Solving

How Poison is played:

- There are twenty tiles
- Two teams take turns removing 1 or 2 tiles
- The team to take the last tile loses
- Problem Solving- find the winning strategy

Transcripts used:

- 4 Cassette Recorded Dialogues
- 3 Computer Recorded Dialogues

TRANSCRIPT ANALYSIS

Speaker	Line	Bit	CT	C	PT	P	Sentence	
Ag	201	6	195	Rp			well everytime ive had 4, or 7 i lose.	
Al	202	19	201	Rq			huh?	
Ag	203	19	201	Et			Oh wait, that's every round >: (
Al	204	19	203	F			i dont think it matters	
Н	205	19		Nc			hahaha	
Н	206	16		O		P	lets do 23 again and ill pick a 1 to start instead of a 2?	
Ag	207	19	206	F			FINE	
Ag	208	19		S			It's quiet	
Ag	209	19	209	Et			Too quiet	
J	210	13		0		R	i just tried to avoid 7 and still got stuck with 4	
Ag	211	19		Nc			hahhahahaha	
Computer Transcript example								

Speaker	Line	Bit	CT	С	PT	P	Sentence	
С	39	13		Rq		Ch	5, if it was your turn, you'd want to take 1 right?	
С	40	1	39	Е	39	Re	To get it down to 4	
Α	41	19	40	F			Yeah	
В	42	19	40	F			Yeah	
С	43	13	40	EI	40	Re	So that the other person would lose	
В	44	17	43	Et2	43	Re	Yeah, so the next person would take 2 or 1	
С	45	13		0		R	Ok so what if there was, so if there was 6 left,	
							you'd want to take 2	
Α	46	1	45	Et2	45	Re	Yeah 'cause either way you want there to be 4 left,	
							so you don't want there to be 5 when it's.	
Α	47	2		0		Т	If there's 3 left, and it's not your turn, you should	
							lose, because the other person should take 2.	
С	48	10		O		Т	OK so let's look at 7, because 4, 5, and 6 we know.	

Voice Transcript example

Transcripts were annotated three ways: ▶ Bits of Realization: a set of annotations specific to solving the Poison problem developed at VU.

- Conversation: a set of dialogue actions, developed by the VMT project observing students solving math problems.
- ▶ Problem Solving: a set of problem solving actions, also from VMT.

Code	Conversation Tag
0	Offer
Rq	Request
Rg	Regulate
F	Follow
El	Elaborate
Et	Extend
Rt	Retype
Se	Setup
Α	Agree
Е	Explain

Code Problem Solving Tag Orientation Tactic Perform Ch Check Re Restate Su Summarize Rf Reflect R Result

CHI SQUARED TESTING

	χ^2 test p-values
Bits of Knowledge	2.3×10^{-52}
Conversation Tags	1.6×10^{-31}
Problem Solving Tags	3.0×10^{-11}
Threading	2.2×10^{-21}

The null hypothesis that voice and computer-mediated behavior are the same is rejected. All p < 0.001.

Observing the differences in Bits of Realization, the Problem Solving annotations, and the Conversation annotations, the difference is clear: the online participants were far more into playing Poison as a video game while the in-person participants were working more on solving the exercise.

FUTURE WORK

Bit of Realization

4 tiles is important

2 and 3 are good tiles

You want to leave your

opponent with 19 tiles

Going first gives you

control of the game

You want to take 1

tile on your first move

1, 4, 7, 10, 13, 16, 19

are the poison numbers

"Opposite" strategy

"3 pattern"

Wrong statements

Exploring

Playing the game

Making an observation

Clarifying observations

Clarifying rules

Exploring further

versions of the game

Hypothesizing

There is a winning strategy

Filler ("Yeah", "OK")

Perspective

Opponent knowing strategy

Computer references

"reset", "boxes"

- Online play is restricted to using 20 tiles or fewer
- Use COMPS to monitor problem solving and perform the tasks the professor performs
- COMPS identifies the 3 different annotation tags

Can the computer correctly analyze the tags

- Conversational
- Problem-Solving
- Bits of Knowledge

GOALS

Project Goals for the 2011-12 School Year

- Math 110 students play online version of Poison
- The students use chat boxes for problem solving
- Learn how students work together
- Determine if there is a difference between computer and voice dialogues
- Use statistics from the transcript counts to interpret findings

Short term project goals:

- Analyze transcripts again for consistencies
- Include new bits of realization
- Manually tag transcripts based on newly added bits as well as conversation and problem solving tags

STATISTICS

Bits	Comp	Voice
1	2.61%	4.07%
4	0.25%	1.31%
11	22.86%	12.48%
13	4.97%	15.51%
19	50.68%	28.91%

Conversation	Comp	Voice
El	1.49%	7.08%
Nc	15.03%	5.74%
O	6.96%	18.29%
Rq	11.18%	11.08%
S	21.86%	4.14%

Problem Solving	Comp	Voice
Ch	7.53%	10.00%
O	10.75%	2.89%
Р	9.68%	17.63%
Rf	7.53%	13.16%
Т	38.71%	12.11%

The percentages suggest that working in person with a group produces a different conversation and problem-solving flow than working through a computer chat program.

Bits of Realization:

- voice conversations richer with Bit 13 making an observation
- online conversations richer with Bits 19 filler and 11 playing the game

Conversation:

 voice conversations richer in offer and elaborate dialogue moves

Problem Solving:

- voice conversations richer in **perform**, **check**, and **reflect**
- the online conversations richer in tactic.

ACKNOWLEDGMENTS AND REFERENCES

- Strijbos, Jan-Willem. A Multidimensional Coding Scheme for VMT. 2009. In Stahl, Gerry, ed., Studying Virtual Math Teams, ch 22.
- Dion, Lisa, Jank, Jeremy, and Rutt, Nicole. Computer Monitored Problem Solving Dialogues. 2011. Final report from VERUM: VU summer mathematics REU.
- Desjarlais, M, Kim, J.H., and Glass, M. 2012. COMPS Computer Mediated Problem Solving: A First Look. Proc. Midwest Al and Cognitive Sci Conf.

Faculty advisers at Valparaiso University: Professors Michael Glass and Melissa Desjarlais