Valparaiso University ValpoScholar

Physics and Astronomy Faculty Presentations

Department of Physics and Astronomy

3-1-2010

An examination of the impact of air from China on summertime air quality in Japan before, during, and after the Beijing Olympics

Gary A. Morris Valparaiso University, gary.morris@valpo.edu

Hajime Akimoto Acid Deposition and Oxidant Research Center, Niigata, JAPAN

Masayuki Takigawa Research Institute for Global Change, JAMSTEC Yokohama, JAPAN

Jun Hirokawa Faculty of Environmental Earth Science, Hokkaido Univ., Sapporo, JAPAN

Fumio Hasebe Faculty of Environmental Earth Science, Hokkaido Univ., Sapporo, JAPAN

See next page for additional authors Follow this and additional works at: http://scholar.valpo.edu/phys_astro_fac_presentations
Part of the <u>Earth Sciences Commons</u>, <u>Environmental Monitoring Commons</u>, and the <u>Physics</u> Commons

Recommended Citation

Morris, Gary A.; Akimoto, Hajime; Takigawa, Masayuki; Hirokawa, Jun; Hasebe, Fumio; Fujiwara, Masatomo; Miyagawa, Koji; Krotkov, Nicholay; Witte, Jacquie; Kanaya, Yugo; Kellams, Nathan; and Pietrzak, Ted, "An examination of the impact of air from China on summertime air quality in Japan before, during, and after the Beijing Olympics" (2010). *Physics and Astronomy Faculty Presentations*. Paper 3.

http://scholar.valpo.edu/phys_astro_fac_presentations/3

This is brought to you for free and open access by the Department of Physics and Astronomy at ValpoScholar. It has been accepted for inclusion in Physics and Astronomy Faculty Presentations by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at scholar@valpo.edu.

Authors

Gary A. Morris, Hajime Akimoto, Masayuki Takigawa, Jun Hirokawa, Fumio Hasebe, Masatomo Fujiwara, Koji Miyagawa, Nicholay Krotkov, Jacquie Witte, Yugo Kanaya, Nathan Kellams, and Ted Pietrzak

Abstract

During July – September 2008 pollution controls in China associated with the Beijing Olympics led to emissions reductions of up to 43%, as observed by NASA satellite instruments. Pollution from China has an impact on air quality throughout East Asia. In this poster, we examine the impact of China's pollution on Japan through the use of Aura satellite data (2005 – 2009), ozonesonde data (2000 – 2009), and data from air quality surface monitors (2000 – 2009). We also examine the year-to-year variability in meteorological flow regimes through trajectory model simulations of transport to Japan from the areas around Beijing and Shanghai, China and around Seoul, South Korea in order to apportion remote sources of pollution. Data link the 6 August 2008 pollution event in Hokkaido to the Beijing region. We also find impacts of air from China on mean August ozone concentrations in Hokkaido and Kyushu, and significant trends in July – September tropospheric ozone profiles since 2000, particularly between 5 – 10 km, using the Sapporo ozonesonde data set from the Japan Meteorological Agency (JMA, 2000 – 2009) and the our ozonesondes launched from Hokkaido University (2008 – 2009).

6 August 2008 Pollution Event

Figure 1. Sapporo skies were noticeably hazier on 6 Aug. Both photos were taken at ~ 2 pm local time. The arrows mark the same geographic point. Surface monitors in Beijing recorded high levels of pollution 3 – 9 Aug. 2008. Models suggest transport from near Beijing to Hokkaido around 6 Aug (see Fig. 5 below).

Figure 2. 30-minute average data at Hokkaido Univ. (Sapporo, Japan) show O_3 peaked > 60 ppb on 6 Aug. data (black dots) when skies were hazy show. The Aug. mean data (gray) show typical afternoon peaks < 30 ppb.

Figure 3. Data from the 6 Aug. ozonesonde

elevated O_3 at the top of the mixed layer.

Air in this layer is also humid, suggesting

launched at Hokkaido Univ. shows

origins near the surface.

Olympics Games.

Figure 4. Trop. NO₂ column on 6 Aug. is typical. Beijing is marked by the star. Purple~1; blue-greer \sim 4; red > 8 ×10¹⁵ molecules/cm². Courtesy E. Celarier (NASA GSFC)

NASA Aura Satellite – OMI SO₂ Data

31 October periods 2005 - 2009 from the Aura OMI instrument shows 2008 values ~13% lower than 2005 - 2007 values. Decreases were also observed for column NO₂ (43%) and CO (~12%). See Witte et al. (2009) for details.

An examination of the impact of air from China on summertime air quality in Japan before, during, and after the Beijing Olympics

G. Morris¹, H. Akimoto², M. Takigawa³, J. Hirokawa⁴, F. Hasebe⁴, M. Fujiwara⁴, K. Miyagawa⁵, N. Krotkov⁶, J. Witte⁷, Y. Kanaya³, N. Kellams¹, and T. Pietrzak⁸

¹ Dept. of Physics & Astronomy, Valparaiso Univ., Valparaiso, IN; ²Acid Deposition and Oxidant Research Center, Niigata, JAPAN; ³Research Institute for Global Change, JAMSTEC Yokohama, JAPAN; ⁴Faculty of Environmental Earth Science, Hokkaido Univ., Sapporo, JAPAN; ⁵Aerological Observatory, Japan Meteorological Agency, Tsukuba, JAPAN; ⁶GEST Center, Univ. of Maryland Balt. Co., Baltimore, MD; ⁷Atmospheric Chemistry & Dynamics Branch, NASA Goddard Space Flight Center, Greenbelt, MD; ⁸Dept. of Meteorology, Valparaiso University, Valparaiso, IN

Sapporo Surface O₃ Aug. 2008

Figure 5. NASA GSFC Trajectory Model (Schoeberl & Sparling, 1995) indicates air on 2 - 4 Aug. near Beijing arrives in Hokkaido on 6 Aug. The kinematic model (KTM) is run with NCEP reanalysis winds $(1^{\circ} \times 1^{\circ} \text{ grid})$. See also the Aug. '08 computer animation.

Figure 8. Mean O_3 profiles from Sapporo soundings. The black & gray lines (thick = mean, thin = 1σ) are from the EnSci electrochemical cell (ECC, Komhyr, 1986) systems (KI) launched during Aug. 2008 & 2009 by G. Morris at Hokkaido Univ. All others are KC96 (CI) sondes, typically launched ~1 per week by the Japan Meteorological Agency (JMA).

Figure 10. This dual instrument payload was launched on 18 flights from Hokkaido Univ. in Aug. 2008 and 2009. From left to right are the RS80-15N radiosonde, the standard En-Sci 2Z ozonesonde, and a second ozonesonde with SO_2 filter (the circled white tube). When SO_2 is present, the standard, unfiltered ozonesonde effectively measures $[O_3] - [SO_2]$. By differencing the filtered (right) and unfiltered (left) ozonesonde measurements, we can deduce [SO₂]. Lab tests indicate the filters do not destroy O_3 while they are 85 - 100%effective at destroying SO₂.

Figure 9. O_3 profile trends in 1 km bins as derived from the data plotted in Fig. 8, including (black) and excluding (blue) the ECC data, and excluding 2008 (red). Error bars are 1σ . Trends w/ and w/out 2008 data: $7 - 10 \text{ km} = (1.44 \pm 0.38) \text{ and } (1.80 \pm 0.41) \text{ ppb/}$ yr; $2 - 5 \text{ km} = (0.7677 \pm 0.0097) \text{ and } (0.930 \pm 0.041)$ ppb/yr. The differences may be due in part to the pollution controls in China during the 2008 Beijing Olympic Games.

Figure 11. A SO₂ feature appears near 7.3 km on the descent of the 18 Aug. 2009 launch. The ascending (A) O_3 profiles for both the filtered (F) and unfiltered (UF) sondes are identical. The descending (D) F sonde shows an ozone peak at 7.3 km while the UF sonde shows an O_3 decrease, similar to the ascending profile. The KTM suggests air mass origins <4 km near Beijing. Our hypothesis is that strong convection along a front lifted air with high SO₂ and O₃ from near the surface on 16 - 17 Aug. to ~7.5 km, where it was transported rapidly to Hokkaido and observed.

Figure 12 (left). A special Aura OMI high-resolution retrieval shows SO_2 near Hokkaido on 18 Aug. 2009. The OMI overpass was at \sim 3:40 UT while the sonde SO₂ feature was detected at ~6:55 UT. Marked on the map are the positions of the sonde at the time it detected SO_2 (see Fig. 11) and the projected location of that air mass at the time of the OMI overpass, based on sonde-measured wind speed and direction. The sonde column SO_2 is 0.25 DU, similar to the OMI columns near the projected air mass location at the time of the overpass.

References and Acknowledgements

Komhyr, W.D. (1986), Operations Handbook: Ozone measurements to 40 km altitude with mode 4A electrochemical concentration cell (ECC) ozonesondes (used with 1680-Mhz radiosondes), NOAA Technical Memorandum ERLARL-149. Krotkov, M. A., B. McClure, R. R. Dickerson, S. A. Carn, C. Li, P. K. Bhartia, K. Yang, A. J. Krueger, Z. Li, P. Levelt, H. Chen, P. Wang, and D. R. Lu (2008), Validation of SO₂ retrievals from the Ozone Monitoring Instrument (OMI) over NE China, J. Geophys. Res.,

113, D16S40, doi:10.1029/2007JD008818. Schoeberl, M. R. and L. Sparling (1995), Trajectory Modeling, in *Diagnostic Tools in Atmospheric Physics*, G. Fiocco and G. Visconti eds., Proceedings of the International School of Physics "Enrico Fermi", Vol. 124, 289 – 306.

Witte J. C., M. R. Schoeberl, A. R. Douglass, J. F. Gleason, N. A. Krotkov, J. C. Gille, K. E. Pickering, N. Livesey (2009), Satellite observations of changes in air quality during the 2008 Beijing Olympics and Paralympics, Geophys. Res. Lett., 36, L17803, doi: 10.1029/2009GL039236.

All data can be found at http://physics.valpo.edu/ozone/fulbrightdata.html. Email questions to Gary.Morris@valpo.edu

Funding for this research has been provided by: Fulbright – Japan/U.S. Educational Commission and the NASA Earth Science Division

Thanks to Gordon Labow (NASA GSFC) for help with ozonesonde data

simulated with the KTM (see Fig. 5). The model suggests 6 - 7 and 11 - 12 August as days with rarely reached Hokkaido during August 2008.

Figure 16. Number of days each August with > 100 KTM parcels below 2.5 km above Hokkaido (left) and Kyushu (right) originating around Beijing, Shanghai, and Seoul. Data from 2008 shows less than average Asian influence in Hokkaido but was a more typical in Kyushu.

Figure 17. August 2000 – 2008 monthly mean surface monitor O_3 in Hokkaido (left) and Kyushu (right) (data from www.nies.go.jp) versus the number of days with >100 KTM parcels from Beijing, Shanghai, and Seoul (see above Fig. 16). Beijing has a strong influence in both locations, while Seoul impacts Kyushu more than Hokkaido.

Conclusions and Future Work

- Beijing Olympic period as compared to 2005 2007 data. (SO₂: -13%, NO₂: -43%).
- controls in China may have been effective. Further investigation is needed.
- mechanism may be related to the trends aloft in the Sapporo sonde data.
- while air from Seoul more strongly influences Kyushu.

• Surface O₃ in Hokkaido on 6 Aug. 2008 was enhanced by the arrival of air from China. • Data from OMI on NASA's Aura satellite suggest decreases in pollution during the 2008

• Sapporo ozonesonde data show statistically significant positive trends 2 – 10 km. Trends are higher 2 – 5 and 7 – 10 km when 2008 data are excluded, suggesting Olympic pollution

• The 18 Aug. 2009 sonde found a peak of high O_3 and high SO_2 at ~7.3 km that may have been lofted from the surface by strong convection near Beijing 24 – 48 hours earlier. This

• Higher summertime surface O_3 in Hokkaido and Kyushu is linked to air transported from the continent. Arrival of air from Beijing significantly influences surface O3 at both locations,